19 research outputs found

    Sensory Ataxic Neuropathy in Golden Retriever Dogs Is Caused by a Deletion in the Mitochondrial tRNATyr Gene

    Get PDF
    Sensory ataxic neuropathy (SAN) is a recently identified neurological disorder in golden retrievers. Pedigree analysis revealed that all affected dogs belong to one maternal lineage, and a statistical analysis showed that the disorder has a mitochondrial origin. A one base pair deletion in the mitochondrial tRNATyr gene was identified at position 5304 in affected dogs after re-sequencing the complete mitochondrial genome of seven individuals. The deletion was not found among dogs representing 18 different breeds or in six wolves, ruling out this as a common polymorphism. The mutation could be traced back to a common ancestor of all affected dogs that lived in the 1970s. We used a quantitative oligonucleotide ligation assay to establish the degree of heteroplasmy in blood and tissue samples from affected dogs and controls. Affected dogs and their first to fourth degree relatives had 0–11% wild-type (wt) sequence, while more distant relatives ranged between 5% and 60% wt sequence and all unrelated golden retrievers had 100% wt sequence. Northern blot analysis showed that tRNATyr had a 10-fold lower steady-state level in affected dogs compared with controls. Four out of five affected dogs showed decreases in mitochondrial ATP production rates and respiratory chain enzyme activities together with morphological alterations in muscle tissue, resembling the changes reported in human mitochondrial pathology. Altogether, these results provide conclusive evidence that the deletion in the mitochondrial tRNATyr gene is the causative mutation for SAN

    DNA building blocks: keeping control of manufacture

    Get PDF
    Ribonucleotide reductase (RNR) is the only source for de novo production of the four deoxyribonucleoside triphosphate (dNTP) building blocks needed for DNA synthesis and repair. It is crucial that these dNTP pools are carefully balanced, since mutation rates increase when dNTP levels are either unbalanced or elevated. RNR is the major player in this homeostasis, and with its four different substrates, four different allosteric effectors and two different effector binding sites, it has one of the most sophisticated allosteric regulations known today. In the past few years, the structures of RNRs from several bacteria, yeast and man have been determined in the presence of allosteric effectors and substrates, revealing new information about the mechanisms behind the allosteric regulation. A common theme for all studied RNRs is a flexible loop that mediates modulatory effects from the allosteric specificity site (s-site) to the catalytic site for discrimination between the four substrates. Much less is known about the allosteric activity site (a-site), which functions as an on-off switch for the enzyme's overall activity by binding ATP (activator) or dATP (inhibitor). The two nucleotides induce formation of different enzyme oligomers, and a recent structure of a dATP-inhibited α6β2 complex from yeast suggested how its subunits interacted non-productively. Interestingly, the oligomers formed and the details of their allosteric regulation differ between eukaryotes and Escherichia coli Nevertheless, these differences serve a common purpose in an essential enzyme whose allosteric regulation might date back to the era when the molecular mechanisms behind the central dogma evolved

    Population structure in contemporary Sweden--a Y-chromosomal and mitochondrial DNA analysis.

    No full text
    A population sample representing the current Swedish population was analysed for maternally and paternally inherited markers with the aim of characterizing genetic variation and population structure. The sample set of 820 females and 883 males were extracted and amplified from Guthrie cards of all the children born in Sweden during one week in 2003. 14 Y-chromosomal and 34 mitochondrial DNA SNPs were genotyped. The haplogroup frequencies of the counties closest to Finland, Norway, Denmark and the Saami region in the north exhibited similarities to the neighbouring populations, resulting from the formation of the Swedish nation during the past millennium. Moreover, the recent immigration waves of the 20th century are visible in haplogroup frequencies, and have led to increased diversity and divergence of the major cities. Signs of genetic drift can be detected in several counties in northern as well as in southern Sweden. With the exception of the most drifted subpopulations, the population structure in Sweden appears mostly clinal. In conclusion, our study yielded valuable information of the structure of the Swedish population, and demonstrated the usefulness of biobanks as a source of population genetic research. Our sampling strategy, nonselective on the current population rather than stratified according to ancestry, is informative for capturing the contemporary variation in the increasingly panmictic populations of the world

    Oncological outcomes of standard versus prolonged time to surgery after neoadjuvant chemoradiotherapy for oesophageal cancer in the multicentre, randomised, controlled NeoRes II trial

    No full text
    Background: The optimal time to surgery (TTS) after neoadjuvant chemoradiotherapy (nCRT) for oesophageal cancer is unknown and has traditionally been 4-6 weeks in clinical practice. Observational studies have suggested better outcomes, especially in terms of histological response, after prolonged delay of up to 3 months after nCRT. The NeoRes II trial is the first randomised trial to compare standard to prolonged TTS after nCRT for oesophageal cancer. Patients and methods: Patients with resectable, locally advanced oesophageal cancer were randomly assigned to standard delay of surgery of 4-6 weeks or prolonged delay of 10-12 weeks after nCRT. The primary endpoint was complete histological response of the primary tumour in patients with adenocarcinoma (AC). Secondary endpoints included histological tumour response, resection margins, overall and progression-free survival in all patients and stratified by histologic type. Results: Between February 2015 and March 2019, 249 patients from 10 participating centres in Sweden, Norway and Germany were randomised: 125 to standard and 124 to prolonged TTS. There was no significant difference in complete histological response between AC patients allocated to standard (21%) compared to prolonged (26%) TTS (P = 0.429). Tumour regression, resection margins and number of resected lymph nodes, total and metastatic, did not differ between the allocated interventions. The first quartile overall survival in patients allocated to standard TTS was 26.5 months compared to 14.2 months after prolonged TTS (P = 0.003) and the overall risk of death during follow-up was 35% higher after prolonged delay (hazard ratio 1.35, 95% confidence interval 0.94-1.95, P = 0.107). Conclusion: Prolonged TTS did not improve histological complete response or other pathological endpoints, while there was a strong trend towards worse survival, suggesting caution in routinely delaying surgery for >6 weeks after nCRT
    corecore