130 research outputs found

    Determination of the micromagnetic parameters in (Ga,Mn)As using domain theory

    Full text link
    The magnetic domain structure and magnetic properties of a ferromagnetic (Ga,Mn)As epilayer with perpendicular magnetic easy-axis are investigated. We show that, despite strong hysteresis, domain theory at thermodynamical equilibrium can be used to determine the micromagnetic parameters. Combining magneto-optical Kerr microscopy, magnetometry and ferromagnetic resonance measurements, we obtain the characteristic parameter for magnetic domains λc\lambda_c, the domain wall width and specific energy, and the spin stiffness constant as a function of temperature. The nucleation barrier for magnetization reversal and the Walker breakdown velocity for field-driven domain wall propagation are also estimated

    Crystal structures of self-assembled nanotubes from flexible macrocycles by weak interactions

    Get PDF
    8 páginas, 7 figuras, 2 tablas, 2 esquemas.Herein we report the crystal structures of tubular self-assemblies of flexible macrooligolides. The assembly is driven by the propensity of the macrocycles to create nearly flat structures displaying a void space within them and the cooperativity of weak directional interactions such as dipole–dipole interactions and CH***Ohydrogen bonds and non-directional interactions such as van der Waals contacts. The significance of the stereochemistry and the size of the cavity in the formation of the nanotubes are also studied.This research was supported by the Spanish MICINN-FEDER (CTQ2008-03334/BQU, CTQ2008-06806-C02-01/BQU and CTQ2008-06754-C04-01/PPQ), the MSC (RTICC RD06/0020/ 1046) and the Canary Islands FUNCIS (PI 01/06).Peer reviewe

    Patient selection for LIVE therapy: from clinical indications to multimodality imaging individual case planning

    Get PDF
    Background Less Invasive Ventricular Enhancement (LIVE) with Revivent TC is an innovative therapy for symptomatic ischemic heart failure (HF). It is designed to reconstruct a negatively remodeled left ventricle (LV) after an anterior myocardial infarction (MI) by plication of the scar tissue. Its indications are specific, and as with any other structural heart intervention, the success of the procedure starts with appropriate patient selection. We aim to present the indications of the technique, crucial aspects in patient selection, and individual case planning approach. Methods and results After clinical evaluation, transthoracic echocardiography is the first imaging modality to be performed in a potential candidate for the therapy. However, definitive indication and detailed case planning rely on late gadolinium-enhanced cardiac magnetic resonance imaging or multiphasic contrast-enhanced cardiac computed tomography. These imaging modalities also assist with relative or absolute contra-indications for the procedure. Individual assessment is done to tailor the procedure to the specifics of the LV anatomy and location of the myocardial scar. Conclusion LIVE procedure is a unique intervention to treat symptomatic HF and ischemic cardiomyopathy after anterior MI. It is a highly customizable intervention that allows a patient-tailored approach, based on multimodality imaging assessment and planification

    3D echocardiographic reference ranges for normal left ventricular volumes and strain: Results fromthe EACVI NORRE study

    Get PDF
    Aim To obtain the normal ranges for 3D echocardiography (3DE) measurement of left ventricular (LV) volumes, function, and strain from a large group of healthy volunteers. Methods and results A total of 440 (mean age: 45613 years) out of the 734 healthy subjects enrolled at 22 collaborating institutions of the Normal Reference Ranges for Echocardiography (NORRE) study had good-quality 3DE data sets that have been analysed with a vendor-independent software package allowing homogeneous measurements regardless of the echocardiographic machine used to acquire the data sets. Upper limits of LV end-diastolic and end-systolic volumes were larger in men (97 and 42 mL/m2) than in women (82 and 35 mL/m2; P<0.0001). Conversely, lower limits of LV ejection fraction were higher in women than in men (51% vs. 50%; P<0.01). Similarly, all strain components were higher in women than in men. Lower range was -18.6% in men and -19.5% in women for 3D longitudinal strain, -27.0% and -27.6% for 3D circumferential strain, -33.2% and -34.4% for 3D tangential strain and 38.8% and 40.7% for 3D radial strain, respectively. LV volumes decreased with age in both genders (P<0.0001), whereas LV ejection fraction increased with age only in men. Among 3DE LV strain components, the only one, which did not change with age was longitudinal strain. Conclusion The NORRE study provides applicable 3D echocardiographic reference ranges for LV function assessment. Our data highlight the importance of age- and gender-specific reference values for both LV volumes and strain. All rights reserved

    Transapical mitral valve implantation for treatment of symptomatic mitral valve disease: a real-world multicentre experience.

    Get PDF
    AIMS Transcatheter mitral valve implantation (TMVI) is a new treatment option for patients with symptomatic mitral valve (MV) disease. Real-world data have not yet been reported. This study aimed to assess procedural and 30-day outcomes of TMVI in a real-world patient cohort. METHOD AND RESULTS All consecutive patients undergoing implantation of a transapically delivered self-expanding valve at 26 European centres from January 2020 to April 2021 were included in this retrospective observational registry. Among 108 surgical high-risk patients included (43% female, mean age 75 ± 7 years, mean STS-PROM 7.2 ± 5.3%), 25% was treated for an off-label indication (e.g. previous MV intervention or surgery, mitral stenosis, mitral annular calcification). Patients were highly symptomatic (New York Heart Association [NYHA] functional class III/IV in 86%) and mitral regurgitation (MR) was graded 3+/4+ in 95% (38% primary, 37% secondary, and 25% mixed aetiology). Technical success rate was 96%, and MR reduction to ≤1+ was achieved in all patients with successful implantation. There were two procedural deaths and 30-day all-cause mortality was 12%. At early clinical follow-up, MR reduction was sustained and there were significant reductions of pulmonary pressure (systolic pulmonary artery pressure 52 vs. 42 mmHg, p < 0.001), and tricuspid regurgitation severity (p = 0.013). Heart failure symptoms improved significantly (73% in NYHA class I/II, p < 0.001). Procedural success rate according to MVARC criteria was 80% and was not different in patients treated for an off-label indication (74% vs. 81% for off- vs. on-label, p = 0.41). CONCLUSION In a real-world patient population, TMVI has a high technical and procedural success rate with efficient and durable MR reduction and symptomatic improvement

    Laser writing of coherent colour centres in diamond

    Get PDF
    Optically active point defects in crystals have gained widespread attention as photonic systems that can find use in quantum information technologies [1,2]. However challenges remain in the placing of individual defects at desired locations, an essential element of device fabrication. Here we report the controlled generation of single nitrogen-vacancy (NV) centres in diamond using laser writing [3]. The use of aberration correction in the writing optics allows precise positioning of vacancies within the diamond crystal, and subsequent annealing produces single NV centres with up to 45% success probability, within about 200 nm of the desired position. Selected NV centres fabricated by this method display stable, coherent optical transitions at cryogenic temperatures, a pre-requisite for the creation of distributed quantum networks of solid-state qubits. The results illustrate the potential of laser writing as a new tool for defect engineering in quantum technologies

    Enhancement of the Electron Spin Resonance of Single-Walled Carbon Nanotubes by Oxygen Removal

    Full text link
    We have observed a nearly fourfold increase in the electron spin resonance (ESR) signal from an ensemble of single-walled carbon nanotubes (SWCNTs) due to oxygen desorption. By performing temperature-dependent ESR spectroscopy both before and after thermal annealing, we found that the ESR in SWCNTs can be reversibly altered via the molecular oxygen content in the samples. Independent of the presence of adsorbed oxygen, a Curie-law (spin susceptibility 1/T\propto 1/T) is seen from \sim4 K to 300 K, indicating that the probed spins are finite-level species. For both the pre-annealed and post-annealed sample conditions, the ESR linewidth decreased as the temperature was increased, a phenomenon we identify as motional narrowing. From the temperature dependence of the linewidth, we extracted an estimate of the intertube hopping frequency; for both sample conditions, we found this hopping frequency to be \sim100 GHz. Since the spin hopping frequency changes only slightly when oxygen is desorbed, we conclude that only the spin susceptibility, not spin transport, is affected by the presence of physisorbed molecular oxygen in SWCNT ensembles. Surprisingly, no linewidth change is observed when the amount of oxygen in the SWCNT sample is altered, contrary to other carbonaceous systems and certain 1D conducting polymers. We hypothesize that physisorbed molecular oxygen acts as an acceptor (pp-type), compensating the donor-like (nn-type) defects that are responsible for the ESR signal in bulk SWCNTs.Comment: 14 pages, 7 figure
    corecore