32 research outputs found

    A Haystack Heuristic for Autoimmune Disease Biomarker Discovery Using Next-Gen Immune Repertoire Sequencing Data.

    Get PDF
    Large-scale DNA sequencing of immunological repertoires offers an opportunity for the discovery of novel biomarkers for autoimmune disease. Available bioinformatics techniques however, are not adequately suited for elucidating possible biomarker candidates from within large immunosequencing datasets due to unsatisfactory scalability and sensitivity. Here, we present the Haystack Heuristic, an algorithm customized to computationally extract disease-associated motifs from next-generation-sequenced repertoires by contrasting disease and healthy subjects. This technique employs a local-search graph-theory approach to discover novel motifs in patient data. We apply the Haystack Heuristic to nine million B-cell receptor sequences obtained from nearly 100 individuals in order to elucidate a new motif that is significantly associated with multiple sclerosis. Our results demonstrate the effectiveness of the Haystack Heuristic in computing possible biomarker candidates from high throughput sequencing data and could be generalized to other datasets

    Conformational epitopes of myelin oligodendrocyte glycoprotein are targets of potentially pathogenic antibody responses in multiple sclerosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Myelin/oligodendrocyte glycoprotein (MOG) is a putative autoantigen in multiple sclerosis (MS). Establishing the pathological relevance and validity of anti-MOG antibodies as biomarkers has yielded conflicting reports mainly due to different MOG isoforms used in different studies. Because epitope specificity may be a key factor determining anti-MOG reactivity we aimed at identifying <it>a priori </it>immunodominant MOG epitopes by monoclonal antibodies (mAbs) and at assessing clinical relevance of these epitopes in MS.</p> <p>Methods</p> <p>Sera of 325 MS patients, 69 patients with clinically isolated syndrome and 164 healthy controls were assayed by quantitative, high-throughput ELISA for reactivity to 3 different MOG isoforms, and quantitative titers correlated with clinical characteristics. mAbs defined unique immunodominant epitopes distinct to each of the isoforms.</p> <p>Results</p> <p>In the majority of human samples anti-MOG levels were skewed towards low titers. However, in 8.2% of samples high-titer anti-MOG antibodies were identified. In contrast to anti-MOG reactivity observed in a mouse model of MS, in patients with MS these never reacted with ubiquitously exposed epitopes. Moreover, in patients with relapsing-remitting MS high-titer anti-MOG IgG correlated with disability (EDSS; Spearman r = 0.574; p = 0.025).</p> <p>Conclusions</p> <p>Thus high-titer reactivity likely represents high-affinity antibodies against pathologically relevant MOG epitopes, that are only present in a small proportion of patients with MS. Our study provides valuable information about requirements of anti-MOG reactivity for being regarded as a prognostic biomarker in a subtype of MS.</p

    Update on the autoimmune pathology of multiple sclerosis: B-cells as disease-drivers and therapeutic targets.

    No full text
    Collectively, research on the role of B-cells in the pathogenesis of multiple sclerosis (MS) illustrates how translational medicine has given rise to promising therapeutic approaches for one of the most debilitating chronic neurological diseases in young adults. First described in 1935, the experimental autoimmune/allergic encephalomyelitis model is a key animal model that has provided the foundation for important developments in targeted therapeutics.While additional B-cell therapies for MS are presently being developed by the pharmaceutical industry, much remains to be understood about the role played by B-cells in MS. The goal of this review is to summarize how B-cells may contribute to MS pathogenesis and thereby provide a basis for understanding why B-cell depletion is so effective in the treatment of this disease. Key Messages: B-cells are key players in the pathogenesis of MS, and their depletion via B-cell-targeted therapy ameliorates disease activity.In 2008, data from the first CD20-targeting B-cell depleting therapeutic trials using rituximab in MS were published. Since then, there has been a large body of evidence demonstrating the effectiveness of B-cell depletion mediated via anti-CD20 antibodies. Intense research efforts focusing on the immunopathological relevance of B-cells has gained significant momentum and given rise to a constellation of promising therapeutic agents for this complex B-cell-driven disease, including novel anti-CD20 antibodies, as well as agents targeting CD19 and BAFF-R

    Update on the Autoimmune Pathology of Multiple Sclerosis: B-Cells as Disease-Drivers and Therapeutic Targets

    No full text
    BackgroundCollectively, research on the role of B-cells in the pathogenesis of multiple sclerosis (MS) illustrates how translational medicine has given rise to promising therapeutic approaches for one of the most debilitating chronic neurological diseases in young adults. First described in 1935, the experimental autoimmune/allergic encephalomyelitis model is a key animal model that has provided the foundation for important developments in targeted therapeutics.SummaryWhile additional B-cell therapies for MS are presently being developed by the pharmaceutical industry, much remains to be understood about the role played by B-cells in MS. The goal of this review is to summarize how B-cells may contribute to MS pathogenesis and thereby provide a basis for understanding why B-cell depletion is so effective in the treatment of this disease. Key Messages: B-cells are key players in the pathogenesis of MS, and their depletion via B-cell-targeted therapy ameliorates disease activity.Clinical implicationsIn 2008, data from the first CD20-targeting B-cell depleting therapeutic trials using rituximab in MS were published. Since then, there has been a large body of evidence demonstrating the effectiveness of B-cell depletion mediated via anti-CD20 antibodies. Intense research efforts focusing on the immunopathological relevance of B-cells has gained significant momentum and given rise to a constellation of promising therapeutic agents for this complex B-cell-driven disease, including novel anti-CD20 antibodies, as well as agents targeting CD19 and BAFF-R

    Update on the Autoimmune Pathology of Multiple Sclerosis: B-Cells as Disease-Drivers and Therapeutic Targets

    No full text
    Cumulatively, B cell research in multiple sclerosis (MS) is an example for a translational medicine effort that resulted in a promising therapeutic approach for one of the most debilitating chronic neurological diseases of young adults. Experimental autoimmune/allergic encephalomyelitis, the animal model for MS, was first described in 1935, and has since provided the scientific basis for important developments in targeted therapeutics. In 2008, the first CD20-targeting B cell-depleting therapeutic trials using rituximab in MS were published. Owing to the now repeatedly shown significant amelioration of MS disease activity using anti-CD20 B cell depleting strategies, scientific interest in the immunopathological relevance of B cells gained further traction and has since undergone a renaissance of innovative investigations. While additional B cell therapies for MS are presently being developed by the biopharma industry, much remains to be understood about the role B cells in MS. The goal of this review article is to summarize how B cells may contribute to MS pathogenesis as basis to understanding why B cell-depletion is effective in MS
    corecore