432 research outputs found

    The Onsager Algebra Symmetry of τ(j)\tau^{(j)}-matrices in the Superintegrable Chiral Potts Model

    Full text link
    We demonstrate that the τ(j)\tau^{(j)}-matrices in the superintegrable chiral Potts model possess the Onsager algebra symmetry for their degenerate eigenvalues. The Fabricius-McCoy comparison of functional relations of the eight-vertex model for roots of unity and the superintegrable chiral Potts model has been carefully analyzed by identifying equivalent terms in the corresponding equations, by which we extract the conjectured relation of QQ-operators and all fusion matrices in the eight-vertex model corresponding to the TT^T\hat{T}-relation in the chiral Potts model.Comment: Latex 21 pages; Typos added, References update

    Bethe Equation of τ(2)\tau^{(2)}-model and Eigenvalues of Finite-size Transfer Matrix of Chiral Potts Model with Alternating Rapidities

    Full text link
    We establish the Bethe equation of the τ(2)\tau^{(2)}-model in the NN-state chiral Potts model (including the degenerate selfdual cases) with alternating vertical rapidities. The eigenvalues of a finite-size transfer matrix of the chiral Potts model are computed by use of functional relations. The significance of the "alternating superintegrable" case of the chiral Potts model is discussed, and the degeneracy of τ(2)\tau^{(2)}-model found as in the homogeneous superintegrable chiral Potts model.Comment: Latex 25 pages; Typos corrected, Minor changes for clearer presentation, References added-Journal versio

    Factorized finite-size Ising model spin matrix elements from Separation of Variables

    Full text link
    Using the Sklyanin-Kharchev-Lebedev method of Separation of Variables adapted to the cyclic Baxter--Bazhanov--Stroganov or τ(2)\tau^{(2)}-model, we derive factorized formulae for general finite-size Ising model spin matrix elements, proving a recent conjecture by Bugrij and Lisovyy

    On τ(2)\tau^{(2)}-model in Chiral Potts Model and Cyclic Representation of Quantum Group Uq(sl2)U_q(sl_2)

    Full text link
    We identify the precise relationship between the five-parameter τ(2)\tau^{(2)}-family in the NN-state chiral Potts model and XXZ chains with Uq(sl2)U_q (sl_2)-cyclic representation. By studying the Yang-Baxter relation of the six-vertex model, we discover an one-parameter family of LL-operators in terms of the quantum group Uq(sl2)U_q (sl_2). When NN is odd, the NN-state τ(2)\tau^{(2)}-model can be regarded as the XXZ chain of Uq(sl2)U_{\sf q} (sl_2) cyclic representations with qN=1{\sf q}^N=1. The symmetry algebra of the τ(2)\tau^{(2)}-model is described by the quantum affine algebra Uq(sl^2)U_{\sf q} (\hat{sl}_2) via the canonical representation. In general for an arbitrary NN, we show that the XXZ chain with a Uq(sl2)U_q (sl_2)-cyclic representation for q2N=1q^{2N}=1 is equivalent to two copies of the same NN-state τ(2)\tau^{(2)}-model.Comment: Latex 11 pages; Typos corrected, Minor changes for clearer presentation, References added and updated-Journal versio

    The tau_2-model and the chiral Potts model revisited: completeness of Bethe equations from Sklyanin's SOV method

    Full text link
    The most general cyclic representations of the quantum integrable tau_2-model are analyzed. The complete characterization of the tau_2-spectrum (eigenvalues and eigenstates) is achieved in the framework of Sklyanin's Separation of Variables (SOV) method by extending and adapting the ideas first introduced in [1, 2]: i) The determination of the tau_2-spectrum is reduced to the classification of the solutions of a given functional equation in a class of polynomials. ii) The determination of the tau_2-eigenstates is reduced to the classification of the solutions of an associated Baxter equation. These last solutions are proven to be polynomials for a quite general class of tau_2-self-adjoint representations and the completeness of the associated Bethe ansatz type equations is derived. Finally, the following results are derived for the inhomogeneous chiral Potts model: i) Simplicity of the spectrum, for general representations. ii) Complete characterization of the chiral Potts spectrum (eigenvalues and eigenstates) and completeness of Bethe ansatz type equations, for the self-adjoint representations of tau_2-model on the chiral Potts algebraic curves.Comment: 40 pages. Minor modifications in the text and some notation

    Magnetic Dipole Sum Rules for Odd-Mass Nuclei

    Full text link
    Sum rules for the total- and scissors-mode M1 strength in odd-A nuclei are derived within the single-j interacting boson-fermion model. We discuss the physical content and geometric interpretation of these sum rules and apply them to ^{167}Er and ^{161}Dy. We find consistency with the former measurements but not with the latter.Comment: 13 pages, Revtex, 1 figure, Phys. Rev. Lett. in pres

    Antiperiodic dynamical 6-vertex model I: Complete spectrum by SOV, matrix elements of the identity on separate states and connections to the periodic 8-vertex model

    Full text link
    The spin-1/2 highest weight representations of the dynamical 6-vertex and the standard 8-vertex Yang-Baxter algebra on a finite chain are considered in this paper. For the antiperiodic dynamical 6-vertex transfer matrix defined on chains with an odd number of sites, we adapt the Sklyanin's quantum separation of variable (SOV) method and explicitly construct SOV representations from the original space of representations. We provide the complete characterization of eigenvalues and eigenstates proving also the simplicity of its spectrum. Moreover, we characterize the matrix elements of the identity on separated states by determinant formulae. The matrices entering in these determinants have elements given by sums over the SOV spectrum of the product of the coefficients of separate states. This SOV analysis is not reduced to the case of the elliptic roots of unit and the results here derived define the required setup to extend to the dynamical 6-vertex model the approach recently developed in [1]-[5] to compute the form factors of the local operators in the SOV framework, these results will be presented in a future publication. For the periodic 8-vertex transfer matrix, we prove that its eigenvalues have to satisfy a fixed system of equations. In the case of a chain with an odd number of sites, this system of equations is the same entering in the SOV characterization of the antiperiodic dynamical 6-vertex transfer matrix spectrum. This implies that the set of the periodic 8-vertex eigenvalues is contained in the set of the antiperiodic dynamical 6-vertex eigenvalues. A criterion is introduced to find simultaneous eigenvalues of these two transfer matrices and associate to any of such eigenvalues one nonzero eigenstate of the periodic 8-vertex transfer matrix by using the SOV results. Moreover, a preliminary discussion on the degeneracy of the periodic 8-vertex spectrum is also presented.Comment: 36 pages, main modifications in section 3 and one appendix added, no result modified for the dynamical 6-vertex transfer matrix spectrum and the matrix elements of identity on separate states for chains with an odd number of site

    On the construction of pseudo-hermitian quantum system with a pre-determined metric in the Hilbert space

    Full text link
    A class of pseudo-hermitian quantum system with an explicit form of the positive-definite metric in the Hilbert space is presented. The general method involves a realization of the basic canonical commutation relations defining the quantum system in terms of operators those are hermitian with respect to a pre-determined positive definite metric in the Hilbert space. Appropriate combinations of these operators result in a large number of pseudo-hermitian quantum systems admitting entirely real spectra and unitary time evolution. The examples considered include simple harmonic oscillators with complex angular frequencies, Stark(Zeeman) effect with complex electric(magnetic) field, non-hermitian general quadratic form of N boson(fermion) operators, symmetric and asymmetric XXZ spin-chain in complex magnetic field, non-hermitian Haldane-Shastry spin-chain and Lipkin-Meshkov-Glick model.Comment: 29 pages, revtex, minor changes, version to appear in Journal of Physics A(v3

    Does working memory training have to be adaptive?

    Get PDF
    This study tested the common assumption that, to be most effective, working memory (WM) training should be adaptive (i.e., task difficulty is adjusted to individual performance). Indirect evidence for this assumption stems from studies comparing adaptive training to a condition in which tasks are practiced on the easiest level of difficulty only [cf. Klingberg (Trends Cogn Sci 14:317-324, 2010)], thereby, however, confounding adaptivity and exposure to varying task difficulty. For a more direct test of this hypothesis, we randomly assigned 130 young adults to one of the three WM training procedures (adaptive, randomized, or self-selected change in training task difficulty) or to an active control group. Despite large performance increases in the trained WM tasks, we observed neither transfer to untrained structurally dissimilar WM tasks nor far transfer to reasoning. Surprisingly, neither training nor transfer effects were modulated by training procedure, indicating that exposure to varying levels of task difficulty is sufficient for inducing training gains

    Quivers, YBE and 3-manifolds

    Full text link
    We study 4d superconformal indices for a large class of N=1 superconformal quiver gauge theories realized combinatorially as a bipartite graph or a set of "zig-zag paths" on a two-dimensional torus T^2. An exchange of loops, which we call a "double Yang-Baxter move", gives the Seiberg duality of the gauge theory, and the invariance of the index under the duality is translated into the Yang-Baxter-type equation of a spin system defined on a "Z-invariant" lattice on T^2. When we compactify the gauge theory to 3d, Higgs the theory and then compactify further to 2d, the superconformal index reduces to an integral of quantum/classical dilogarithm functions. The saddle point of this integral unexpectedly reproduces the hyperbolic volume of a hyperbolic 3-manifold. The 3-manifold is obtained by gluing hyperbolic ideal polyhedra in H^3, each of which could be thought of as a 3d lift of the faces of the 2d bipartite graph.The same quantity is also related with the thermodynamic limit of the BPS partition function, or equivalently the genus 0 topological string partition function, on a toric Calabi-Yau manifold dual to quiver gauge theories. We also comment on brane realization of our theories. This paper is a companion to another paper summarizing the results.Comment: 61 pages, 16 figures; v2: typos correcte
    corecore