71 research outputs found

    Parameterized Complexity of Graph Constraint Logic

    Get PDF
    Graph constraint logic is a framework introduced by Hearn and Demaine, which provides several problems that are often a convenient starting point for reductions. We study the parameterized complexity of Constraint Graph Satisfiability and both bounded and unbounded versions of Nondeterministic Constraint Logic (NCL) with respect to solution length, treewidth and maximum degree of the underlying constraint graph as parameters. As a main result we show that restricted NCL remains PSPACE-complete on graphs of bounded bandwidth, strengthening Hearn and Demaine's framework. This allows us to improve upon existing results obtained by reduction from NCL. We show that reconfiguration versions of several classical graph problems (including independent set, feedback vertex set and dominating set) are PSPACE-complete on planar graphs of bounded bandwidth and that Rush Hour, generalized to k×nk\times n boards, is PSPACE-complete even when kk is at most a constant

    On Exploring Temporal Graphs of Small Pathwidth

    Get PDF
    We show that the Temporal Graph Exploration Problem is NP-complete, even when the underlying graph has pathwidth 2 and at each time step, the current graph is connected

    How Does Object Fatness Impact the Complexity of Packing in d Dimensions?

    Get PDF
    Packing is a classical problem where one is given a set of subsets of Euclidean space called objects, and the goal is to find a maximum size subset of objects that are pairwise non-intersecting. The problem is also known as the Independent Set problem on the intersection graph defined by the objects. Although the problem is NP-complete, there are several subexponential algorithms in the literature. One of the key assumptions of such algorithms has been that the objects are fat, with a few exceptions in two dimensions; for example, the packing problem of a set of polygons in the plane surprisingly admits a subexponential algorithm. In this paper we give tight running time bounds for packing similarly-sized non-fat objects in higher dimensions. We propose an alternative and very weak measure of fatness called the stabbing number, and show that the packing problem in Euclidean space of constant dimension d >=slant 3 for a family of similarly sized objects with stabbing number alpha can be solved in 2^O(n^(1-1/d) alpha) time. We prove that even in the case of axis-parallel boxes of fixed shape, there is no 2^o(n^(1-1/d) alpha) algorithm under ETH. This result smoothly bridges the whole range of having constant-fat objects on one extreme (alpha=1) and a subexponential algorithm of the usual running time, and having very "skinny" objects on the other extreme (alpha=n^(1/d)), where we cannot hope to improve upon the brute force running time of 2^O(n), and thereby characterizes the impact of fatness on the complexity of packing in case of similarly sized objects. We also study the same problem when parameterized by the solution size k, and give a n^O(k^(1-1/d) alpha) algorithm, with an almost matching lower bound: there is no algorithm with running time of the form f(k) n^o(k^(1-1/d) alpha/log k) under ETH. One of our main tools in these reductions is a new wiring theorem that may be of independent interest

    Computing Treewidth on the GPU

    Get PDF
    We present a parallel algorithm for computing the treewidth of a graph on a GPU. We implement this algorithm in OpenCL, and experimentally evaluate its performance. Our algorithm is based on an O*(2^n)-time algorithm that explores the elimination orderings of the graph using a Held-Karp like dynamic programming approach. We use Bloom filters to detect duplicate solutions. GPU programming presents unique challenges and constraints, such as constraints on the use of memory and the need to limit branch divergence. We experiment with various optimizations to see if it is possible to work around these issues. We achieve a very large speed up (up to 77x) compared to running the same algorithm on the CPU

    Flower power:Finding optimal plant cutting strategies through a combination of optimization and data mining

    Get PDF
    We study a problem that plays an important role in the flower industry: we must determine how many mother plants are required to be able to produce a given demand of cuttings per week. This sounds like an easy problem, but working with living material (plants) introduces complications that are rarely encountered in optimization problems: there is no list with possible cutting patterns, describing the average number of cuttings taken from a mother plant per week. More importantly, there is no easy way to find out whether a cutting pattern is feasible, that is, whether the mother plants can keep up delivering the number of cuttings required by the cutting pattern each week: the only alternative to asking for an 'expert's opinion' is to apply a field-test, which takes a lot of time (and there are very many options to check).We have tackled this problem by a combination of data mining and linear programming. We apply data mining to infer constraints that a feasible cutting pattern should obey, and we use these constraints in a linear programming formulation to determine the minimum number of mother plants that are needed to supply the demand. Due to the linearity of the constraints obtained by data mining, this formulation can be reformulated such that it becomes trivially solvable. Next, we look at the problem of finding the optimal number of mother plants for the case that we can sell a given number of the remaining cuttings on the market for a given price; we show that this problem can be solved efficiently through linear programming

    How does object fatness impact the complexity of packing in d dimensions?

    Get PDF
    Packing is a classical problem where one is given a set of subsets of Euclidean space called objects, and the goal is to find a maximum size subset of objects that are pairwise non-intersecting. The problem is also known as the Independent Set problem on the intersection graph defined by the objects. Although the problem is NP-complete, there are several subexponential algorithms in the literature. One of the key assumptions of such algorithms has been that the objects are fat, with a few exceptions in two dimensions; for example, the packing problem of a set of polygons in the plane surprisingly admits a subexponential algorithm. In this paper we give tight running time bounds for packing similarly-sized non-fat objects in higher dimensions. We propose an alternative and very weak measure of fatness called the stabbing number, and show that the packing problem in Euclidean space of constant dimension d≥3d \geq 3 for a family of similarly sized objects with stabbing number α\alpha can be solved in 2O(n1−1/dα)2^{O(n^{1-1/d}\alpha)} time. We prove that even in the case of axis-parallel boxes of fixed shape, there is no 2o(n1−1/dα)2^{o(n^{1-1/d}\alpha)} algorithm under ETH. This result smoothly bridges the whole range of having constant-fat objects on one extreme (α=1\alpha=1) and a subexponential algorithm of the usual running time, and having very "skinny" objects on the other extreme (α=n1/d\alpha=n^{1/d}), where we cannot hope to improve upon the brute force running time of 2O(n)2^{O(n)}, and thereby characterizes the impact of fatness on the complexity of packing in case of similarly sized objects. We also study the same problem when parameterized by the solution size kk, and give a nO(k1−1/dα)n^{O(k^{1-1/d}\alpha)} algorithm, with an almost matching lower bound.Comment: Short version appears in ISAAC 201

    Gourds: A Sliding-Block Puzzle with Turning

    Get PDF
    We propose a new kind of sliding-block puzzle, called Gourds, where the objective is to rearrange 1 x 2 pieces on a hexagonal grid board of 2n + 1 cells with n pieces, using sliding, turning and pivoting moves. This puzzle has a single empty cell on a board and forms a natural extension of the 15-puzzle to include rotational moves. We analyze the puzzle and completely characterize the cases when the puzzle can always be solved. We also study the complexity of determining whether a given set of colored pieces can be placed on a colored hexagonal grid board with matching colors. We show this problem is NP-complete for arbitrarily many colors, but solvable in randomized polynomial time if the number of colors is a fixed constant.Comment: 15 pages + 3 pages appendix, including 18 figure

    Efficiently computing the Shapley value of connectivity games in low-treewidth graphs

    Get PDF
    The Shapley value is the solution concept in cooperative game theory that is most used in both theoretical and practical settings. Unfortunately, in general, computing the Shapley value is computationally intractable. This paper focuses on computing the Shapley value of (weighted) connectivity games. For these connectivity games, which are defined on an underlying (weighted) graph, computing the Shapley value is #P-hard, and thus (likely) intractable even for graphs with a moderate number of vertices. We present an algorithm that can efficiently compute the Shapley value if the underlying graph has bounded treewidth. Next, we apply our algorithm to several real-world (covert) networks. We show that our algorithm can quickly compute exact Shapley values for these networks, whereas in prior work these values could only be approximated using a heuristic method. Finally, it is demonstrated that our algorithm can also efficiently compute the Shapley value time for several larger (artificial) benchmark graphs from the PACE 2018 challenge

    A Framework for Exponential-Time-Hypothesis--Tight Algorithms and Lower Bounds in Geometric Intersection Graphs

    Get PDF
    We give an algorithmic and lower bound framework that facilitates the construction of subexponential algorithms and matching conditional complexity bounds. It can be applied to intersection graphs of similarly-sized fat objects, yielding algorithms with running time 2O(n1−1/d)2^{O(n^{1-1/d})} for any fixed dimension d≥2d\ge 2 for many well-known graph problems, including Independent Set, rr-Dominating Set for constant rr, and Steiner Tree. For most problems, we get improved running times compared to prior work; in some cases, we give the first known subexponential algorithm in geometric intersection graphs. Additionally, most of the obtained algorithms are representation-agnostic, i.e., they work on the graph itself and do not require the geometric representation. Our algorithmic framework is based on a weighted separator theorem and various treewidth techniques. The lower bound framework is based on a constructive embedding of graphs into dd-dimensional grids, and it allows us to derive matching 2Ω(n1−1/d)2^{\Omega(n^{1-1/d})} lower bounds under the exponential time hypothesis even in the much more restricted class of dd-dimensional induced grid graphs
    • …
    corecore