23 research outputs found

    Pathology-confirmed versus non pathology-confirmed cancer diagnoses: incidence, participant characteristics, and survival

    Get PDF
    Cancer diagnoses which are not confirmed by pathology are often under-registered in cancer registries compared to pathology-confirmed diagnoses. It is unknown how many patients have a non pathology-confirmed cancer diagnosis, and whether their characteristics and survival differ from patients with a pathology-confirmed diagnosis. Participants from the prospective population-based Rotterdam Study were followed between 1989 and 2013 for the diagnosis of cancer. Cancer diagnoses were classified into pathology-confirmed versus non pathology-confirmed (i.e., based on imaging or tumour markers). We compared participant characteristics and the distribution of cancers at different sites. Furthermore, we investigated differences in overall survival using survival curves adjusted for age and sex. During a median (interquartile range) follow-up of 10.7 (6.3–15.9) years, 2698 out of 14,024 participants were diagnosed with cancer, of which 316 diagnoses (11.7%) were non pathology-confirmed. Participants with non pathology-confirmed diagnoses were older, more often women, and had a lower education. Most frequently non pathology-confirmed cancer sites included central nervous system (66.7%), hepato-pancreato-biliary (44.5%), and unknown primary origin (31.2%). Survival of participants with non pathology-confirmed diagnoses after 1 year was lower compared to survival of participants with pathology-confirmed diagnoses (32.6% vs. 63.4%; risk difference of 30.8% [95% CI 25.2%; 36.2%]). Pathological confirmation of cancer is related to participant characteristics and cancer site. Furthermore, participants with non pathology-confirmed diagnoses have worse survival than participants with pathology-confirmed diagnoses. Missing data on non pathology-confirmed diagnoses may result in underestimation of cancer incidence and in an overestimation of survival in cancer registries, and may introduce bias in aetiological research

    Pathology-confirmed versus non pathology-confirmed cancer diagnoses: incidence, participant characteristics, and survival

    Get PDF
    Cancer diagnoses which are not confirmed by pathology are often under-registered in cancer registries compared to pathology-confirmed diagnoses. It is unknown how many patients have a non pathology-confirmed cancer diagnosis, and whether their characteristics and survival differ from patients with a pathology-confirmed diagnosis. Participants from the prospective population-based Rotterdam Study were followed between 1989 and 2013 for the diagnosis of cancer. Cancer diagnoses were classified into pathology-confirmed versus non pathology-confirmed (i.e., based on imaging or tumour markers). We compared participant characteristics and the distribution of cancers at different sites. Furthermore, we investigated differences in overall survival using survival curves adjusted for age and sex. During a median (interquartile range) follow-up of 10.7 (6.3–15.9) years, 2698 out of 14,024 participants were diagnosed with cancer, of which 316 diagnoses (11.7%) were non pathology-confirmed. Participants with non pathology-confirmed diagnoses were older, more often women, and had a lower education. Most frequently non pathology-confirmed cancer sites included central nervous system (66.7%), hepato-pancreato-biliary (44.5%), and unknown primary origin (31.2%). Survival of participants with non pathology-confirmed diagnoses after 1 year was lower compared to survival of participants with pathology-confirmed diagnoses (32.6% vs. 63.4%; risk difference of 30.8% [95% CI 25.2%; 36.2%]). Pathological confirmation of cancer is related to participant characteristics and cancer site. Furthermore, participants with non pathology-confirmed diagnoses have worse survival than participants with pathology-confirmed diagnoses. Missing data on non pathology-confirmed diagnoses may result in underestimation of cancer incidence and in an overestimation of survival in cancer registries, and may introduce bias in aetiological research

    Inflammation markers and cognitive performance in breast cancer survivors 20 years after completion of chemotherapy: a cohort study

    Get PDF
    BACKGROUND: Inflammation is an important candidate mechanism underlying cancer and cancer treatment-related cognitive impairment. We investigated levels of blood cell-based inflammatory markers in breast cancer survivors on average 20 years after chemotherapy and explored the relation between these markers and global cognitive performance. METHODS: One hundred sixty-six breast cancer survivors who received post-surgical radiotherapy and six cycles of adjuvant cyclophosphamide, methotrexate, and fluorouracil (CMF) chemotherapy on average 20 years before enrollment were compared with 1344 cancer-free women from a population-based sample (50-80 years old). Breast cancer survivors were excluded if they used adjuvant hormonal therapy or if they developed relapse, metastasis, or second primary malignancies. Systemic inflammation status was assessed by the granulocyte-to-lymphocyte ratio (GLR), platelet-to-lymphocyte ratio (PLR), and systemic immune-inflammation index (SII). Cognitive performance was assessed using an extensive neuropsychological test battery from which the general cognitive factor was derived to evaluate global cognitive performance. We examined the association between cancer, the general cognitive factor, and inflammatory markers using linear regression models. RESULTS: Breast cancer survivors had a lower general cognitive factor than non-exposed participants from the comparator group (mean difference = -0.21; 95% confidence interval (CI) -0.35 to -0.06). Inflammatory markers were higher in cancer survivors compared with non-exposed participants (mean difference for log(GLR) = 0.31; 95% CI 0.24 to 0.37, log(PLR) = 0.14; 95% CI 0.09 to 0.19, log(SII) = 0.31; 95% CI 0.24 to 0.39). The association between higher levels of inflammatory markers and lower general cognitive factor was statistically significant in cancer survivors but not among non-exposed participants. We found a group-by-inflammatory marker interaction; cancer survivors showed additional lower general cognitive factor per standard deviation increase in inflammatory markers (P for interaction for GLR = 0.038, PLR = 0.003, and SII = 0.033). CONCLUSIONS: This is the first study to show that (1) cancer survivors have increased levels of inflammation on average 20 years after treatment and (2) these inflammatory levels are associated with lower cognitive performance. Although this association needs verification by a prospective study to determine causality, our findings can stimulate research on the role of inflammation in long-term cognitive problems and possibilities to diminish such problems

    The association of innate and adaptive immunity, subclinical atherosclerosis, and cardiovascular disease in the Rotterdam Study: A prospective cohort study

    Get PDF
    BACKGROUND: Atherosclerotic cardiovascular disease (ASCVD) is driven by multifaceted contributions of the immune system. However, the dysregulation of immune cells that leads to ASCVD is poorly understood. We determined the association of components of innate and adaptive immunity longitudinally with ASCVD, and assessed whether arterial calcifications play a role in this association. METHODS AND FINDINGS: Granulocyte (innate immunity) and lymphocyte (adaptive immunity) counts were determined 3 times (2002-2008, mean age 65.2 years; 2009-2013, mean age 69.0 years; and 2014-2015, mean age 78.5 years) in participants of the population-based Rotterdam Study without ASCVD at baseline. Participants were followed-up for ASCVD or death until 1 January 2015. A random sample of 2,366 underwent computed tomography at baseline to quantify arterial calcification volume in 4 vessel beds. We studied the association between immunity components with risk of ASCVD and assessed whether immunity components were related to arterial calcifications at baseline. Of 7,730 participants (59.4% women), 801 developed ASCVD during a median follow-up of 8.1 years. Having an increased granulocyte count increased ASCVD risk (adjusted hazard ratio for doubled granulocyte count [95% CI] = 1.78 [1.34-2.37], P < 0.001). Higher granulocyte counts were related to larger calcification volumes in all vessels, most prominently in the coronary arteries (mean difference in calcium volume [mm3] per SD increase in granulocyte count [95% CI] = 32.3 [9.9-54.7], P < 0.001). Respectively, the association between granulocyte count and incident coronary heart disease and stroke was partly mediated by coronary artery calcification (overall proportion mediated [95% CI] = 19.0% [-10% to 32.3%], P = 0.08) and intracranial artery calcification (14.9% [-10.9% to 19.1%], P = 0.05). A limitation of our study is that studying the etiology of ASCVD remains difficult within an epidemiological setting due to the limited availability of surrogates for innate and especially adaptive immunity. CONCLUSIONS: In this study, we found that an increased granulocyte count was associated with a higher risk of ASCVD in the general population. Moreover, higher levels of granulocytes were associated with larger volumes of arterial calcification. Arterial calcifications may explain a proportion of the link between granulocytes and ASCVD

    Trajectories of Cognitive and Motor Function Between Ages 45 and 90 Years: A Population-Based Study

    Get PDF
    BACKGROUND: To establish trajectories of cognitive and motor function, and to determine the sequence of change across individual tests in community-dwelling individuals aged 45-90 years. METHOD: Between 1997 and 2016, we repeatedly assessed cognitive function with 5 tests in 9514 participants aged 45-90 years from the population-based Rotterdam Study. Between 1999 and 2016, we measured motor function with 3 tests in 8297 participants. All participants were free from dementia, stroke, and parkinsonism. We assessed overall and education-specific cognitive and motor trajectories using linear mixed models with age as time scale. Next, we determined the sequence of change across individual tests. RESULTS: The number of assessments per participant ranged between 1 and 6 (mean interval, years [SD]: 5.1 [1.4]) for cognitive function, and 1 and 4 (5.4 [1.4]) for motor function. Cognitive and motor trajectories declined linearly between ages 45 and 65 years, followed by steeper declines after ages 65-70 years. Lower educated participants had lower cognitive function at age 45 years (baseline), and declined faster on most cognitive, but not on motor tests than higher educated participants. Up to a 25-year age difference between the fastest and slowest declining test scores was observed. CONCLUSIONS: On a population-level, cognitive and motor function decline similarly. Compared to higher educated individuals, lower educated individuals had lower cognitive f

    Ascertainment of cancer in longitudinal research: The concordance between the Rotterdam Study and the Netherlands Cancer Registry

    Get PDF
    Complete and accurate registration of cancer is needed to provide reliable data on cancer incidence and to investigate aetiology. Such data can be derived from national cancer registries, but also from large population-based cohort studies. Yet, the concordance and discordance between these two data sources remain unknown. We evaluated completeness and accuracy of cancer registration by studying the concordance between the population-based Rotterdam Study (RS) and the Netherlands Cancer Registry (NCR) between 1989 and 2012 using the independent case ascertainment method. We compared all incident cancers in participants of the RS (aged ≥45 years) to registered cancers in the NCR in the same persons based on the date of diagnosis and the International Classification of Diseases (ICD) code. In total, 2,977 unique incident cancers among 2,685 persons were registered. Two hundred eighty-eight cancers (9.7%) were coded by the RS that were not present in the NCR. These were mostly nonpathology-confirmed lung and haematological cancers. Furthermore, 116 cancers were coded by the NCR, but not by the RS (3.9%), of which 20.7% were breast cancers. Regarding pathology-confirmed cancer diagnoses, completeness was >95% in both registries. Eighty per cent of the cancers registered in both registries were coded with the same date of diagnosis and ICD code. Of the remaining cancers, 344 (14.5%) were misclassified with regard to date of diagnosis and 72 (3.0%) with regard to ICD code. Our findings indicate that multiple sources on cancer are complementary and should be combined to ensure reliable data on cancer incidence
    corecore