
297

Journals of Gerontology: Medical Sciences
cite as: J Gerontol A Biol Sci Med Sci, 2021, Vol. 76, No. 2, 297–306

doi:10.1093/gerona/glaa187
Advance Access publication August 4, 2020

© The Author(s) 2020. Published by Oxford University Press on behalf of The Gerontological Society of America.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://
creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, 
provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

Research Article

Trajectories of Cognitive and Motor Function Between 
Ages 45 and 90 Years: A Population-Based Study
Kimberly  D. van  der  Willik, MD,1,2,† Silvan Licher, MD,1,†, Elisabeth  J. Vinke, Msc,1,3 
Maria J. Knol, BSc,1,  Sirwan K. L. Darweesh, MD, PhD,1,4,  Jos N. van der Geest, PhD,5 
Sanne B. Schagen, PhD,2,6 M. Kamran Ikram, MD, PhD,1,7 Annemarie I. Luik, PhD,1,8,  and 
M. Arfan Ikram, MD, PhD1,* 
1Department of Epidemiology, Erasmus MC–University Medical Center Rotterdam, The Netherlands. 2Department of Psychosocial 
Research and Epidemiology, Netherlands Cancer Institute, Amsterdam. 3Department of Radiology and Nuclear Medicine, Erasmus MC–
University Medical Center Rotterdam, The Netherlands. 4Department of Neurology, Radboud University Medical Center, Nijmegen, The 
Netherlands. 5Department of Neuroscience, Erasmus MC–University Medical Center Rotterdam, The Netherlands. 6Brain and Cognition, 
Department of Psychology, University of Amsterdam, The Netherlands. 7Department of Neurology, Erasmus MC–University Medical 
Center Rotterdam, The Netherlands. 8Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC–University Medical 
Center Rotterdam, The Netherlands.

*Address correspondence to: M. Arfan Ikram, MD, PhD, Department of Epidemiology, Erasmus MC–University Medical Center Rotterdam, PO Box 
2040, 3000 CA, Rotterdam, The Netherlands. E-mail m.a.ikram@erasmusmc.nl

†These authors contributed equally.

Received: January 20, 2020; Editorial Decision Date: July 17, 2020

Decision Editor: Anne B. Newman, MD, MPH, FGSA

Abstract

Background:  To establish trajectories of cognitive and motor function, and to determine the sequence of change across individual tests in 
community-dwelling individuals aged 45–90 years.
Method:  Between 1997 and 2016, we repeatedly assessed cognitive function with 5 tests in 9514 participants aged 45–90 years from the 
population-based Rotterdam Study. Between 1999 and 2016, we measured motor function with 3 tests in 8297 participants. All participants 
were free from dementia, stroke, and parkinsonism. We assessed overall and education-specific cognitive and motor trajectories using linear 
mixed models with age as time scale. Next, we determined the sequence of change across individual tests.
Results:  The number of assessments per participant ranged between 1 and 6 (mean interval, years [SD]: 5.1 [1.4]) for cognitive function, and 1 and 4 
(5.4 [1.4]) for motor function. Cognitive and motor trajectories declined linearly between ages 45 and 65 years, followed by steeper declines after 
ages 65–70 years. Lower educated participants had lower cognitive function at age 45 years (baseline), and declined faster on most cognitive, but not 
on motor tests than higher educated participants. Up to a 25-year age difference between the fastest and slowest declining test scores was observed.
Conclusions:  On a population-level, cognitive and motor function decline similarly. Compared to higher educated individuals, lower educated 
individuals had lower cognitive function at baseline, and a faster rate of decline thereafter. These educational-effects were not seen for motor 
function. These findings benefit the understanding of the natural course of cognitive and motor function during aging, and highlight the role 
of education in the preservation of cognitive but not motor function.
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Understanding the natural course of cognitive and motor function 
during brain aging is pivotal to determine deviations in function 
that may signal early stages of clinical neurodegenerative diseases 

(1,2). Decline in both cognitive and motor function has been asso-
ciated with an increased risk of dementia, Parkinson’s disease, and 
stroke (1–3). In addition, we recently showed that individuals in 
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whom decline in motor function precedes decline in cognitive func-
tion are at an increased risk of dementia (3). Numerous studies have 
quantified the temporal relation of cognitive and motor function 
with advancing age (4–17), yet little is known about the sequence 
of individual cognitive and motor tests in a population free from 
neurodegenerative diseases and stroke.

Comparing trajectories of cognitive and motor tests in the 
general population reveals whether decline  in motor function pre-
cedes decline in cognitive function. In addition, it identifies the 
specific individual tests that have the earliest signs of decline. Such 
findings could inform clinicians about which cognitive and motor 
tests are most sensitive to detect change in cognitive or motor func-
tion. These trajectories can also be used to signal vulnerable patient 
groups that deviate from their expected course based on several key 
characteristics, such as age, sex, educational level, or genes. These 
characteristics significantly influence cognitive function and the rate 
of cognitive decline, but their effects on motor function beyond gait 
speed are less understood (18,19).

Alike changes in brain structure, we hypothesize that change in 
cognitive and motor function accelerates with advancing age (20). 
To model this nonlinear change, we present trajectories of cognitive 
and motor function. In addition, we assess the effects of key deter-
minants of cognitive and motor function, namely age, sex, education, 
and apolipoprotein E (APOE) genotype on these trajectories. Finally, 
we determine the sequence of change of individual cognitive and 
motor function tests.

Materials and Methods

Study Design
This study was embedded within the Rotterdam Study, a prospective 
population-based cohort designed to study the occurrence and de-
terminants of age-related diseases in the general population (21). In 
1989, all inhabitants aged 55  years and older from Ommoord, a 
well-defined district in Rotterdam, the Netherlands received an in-
vitation to participate. This initial cohort comprised 7983 partici-
pants. In 2000, 3011 participants who had become 55 years of age 
or moved into the study district since the start of the study were 
additionally included in the cohort. In 2006, a further extension of 
the cohort was initiated in which 3932 participants aged 45 years 
and older participated. In total, the Rotterdam Study comprises 
14 926 participants aged 45 years and older. The overall response 
rate across all 3 recruitment waves was 72%.

Standard Protocol Approvals, Registrations, and 
Patient Consents
The Rotterdam Study has been approved by the Medical Ethics 
Committee of the Erasmus MC (registration number MEC 02.1015) 
and by the Dutch Ministry of Health, Welfare and Sport (Population 
Screening Act WBO, license number 1071272-159521-PG). All parti-
cipants provided written informed consent to participate in the study 
and to have their information obtained from treating physicians.

Study Population
Of a total of 14 926 participants, we excluded those with a history of 
dementia (n = 907), stroke (n = 846), Parkinson’s disease (n = 300), 
or parkinsonism (n = 20) at time of their first cognitive or motor 
assessment. Next, we excluded participants with insufficient data to 
determine whether they had a history of one or multiple of these 
diseases (n = 1800). Baseline and follow-up ascertainment methods 

for dementia, stroke, Parkinson’s disease, and parkinsonism have 
previously been described in detail (22). In addition, 5 participants 
were excluded because they did not provide informed consent to ac-
cess medical records and hospital discharge letters during follow-up. 
From the remaining 11 048 participants, 1494 participants were ex-
cluded because they did not have data available on any cognitive 
or motor test. Finally, we excluded assessments from participants 
after they had reached age 90 years in order to minimize the influ-
ence of leverage points on the trajectories of cognitive and motor 
function. This resulted in an additional exclusion of 33 participants 
who did not have any cognitive or motor function assessment at all 
before the age of 90 years, leaving 9521 participants with at least 
one cognitive or motor assessment. During follow-up, we excluded 
assessments of participants after the age of 90 years (n = 1266) and 
of participants after a dementia, stroke, or Parkinson’s disease diag-
nosis (n = 3175). All of the included participants were thus free from 
neurodegenerative diseases and stroke at time of their test assess-
ments. In total, 155 347 cognitive function assessments from 9514 
participants and 62 545 motor function assessments from 8297 par-
ticipants were available for analyses.

Assessment of Cognitive Function
Between 1997 and 2016, participants underwent cognitive assess-
ments at the research center using a neuropsychological test battery 
every 3–5 years (6,21). This battery included the Word Fluency Test 
(23), Letter-Digit Substitution Test (24), and Stroop Test (Reading, 
Naming, and Interference subtask) (25). In 2002, the 15-Word 
Learning Test (Immediate recall, Delayed recall, and Recognition) 
was added to the test protocol (26). This test protocol was further ex-
panded with the Design Organization Test in 2006 (27). Assessments 
of these cognitive tests have previously been validated and have a 
reasonable to good test–retest reliability (28–31).

Word Fluency Test
In the Word Fluency Test, participants were asked to mention as 
many animals as possible within 60 seconds, thereby measuring se-
mantic fluency (23). The total number of correct answers was used 
as test score, with a maximum score of 30 in our study protocol.

Letter-Digit Substitution Test
The Letter-Digit Substitution Test is a modified version of the 
Symbol Digit Modalities Test for which participants were asked to 
write down as many numbers underneath the corresponding letters 
as possible in 60 seconds, following a key that shows correct com-
binations (24). This test captures both information processing speed 
and aspects of executive function. The total number of correct an-
swers was used as test score with a maximum attainable score of 
125.

Stroop Test
The Stroop Test consists of 3 different subtasks, that is, Reading, 
Naming, and Interference (25). In the Stroop Reading subtask, par-
ticipants were asked to read the printed color names. For the Stroop 
Naming subtask, participants were asked to name the printed color 
blocks. In the Interference subtask, participants were asked to name 
the ink color of color names printed in incongruous ink colors (in-
formation processing on an interference subtask). The time taken 
to complete the subtask was used as the outcome for each subtask 
separately and was adjusted for failures, that is, total time plus for 
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each failure the total time divided by the number of items, multiplied 
with 1.5 (32). Thus, a higher score indicates a worse performance. 
The Stroop Test assesses information processing speed and executive 
function.

Word Learning Test
The Word Learning Test comprises 3 subtasks: Immediate recall, 
Delayed recall, and Recognition (26). For Immediate recall, partici-
pants were 3 times visually presented with a sequence of 15 words 
and were subsequently asked to recall as many of these words as 
possible, measuring verbal learning. Free Delayed recall was tested 
approximately 10 minutes after visual presentation, evaluating re-
trieval from verbal memory. Recognition was tested by visually 
presenting the participants a sequence of 45 words, followed by 
correctly recognizing the 15 words presented during the Immediate 
recall while mixed with 30 other words. Outcome variables were 
the mean number of words of 3 trials immediately recalled (as a 
summary score for Immediate recall), after the delay of 10 minutes 
(as a score for free Delayed recall), and the mean number of cor-
rectly recognized words during the recognition trial (as a score for 
Recognition), with a maximum score of 15 per subtask.

Design Organization Test
The Design Organization Test consists of square black-and-white 
grids with visual patterns, of which participants were asked to repro-
duce as many designs as possible in 2 minutes using a numerical code 
key. It measures visuospatial abilities and is based on and highly 
correlated to WAIS-III block design (27), but is less dependent on 
motor skills. Test score on the Design Organization Test has a range 
from 0 to 56 points for each individual, with higher scores indicating 
better performance.

Assessment of Motor Function
Participants repeatedly underwent motor tests every 3–5  years at 
the research center between 1999 and 2016. This motor test bat-
tery included 2 tests to assess fine motor function and a quantitative 
gait assessment to assess gross motor function. From 1999 onwards, 
the Purdue Pegboard Test was implemented into the study protocol 
to assess manual dexterity. Assessment of fine motor function was 
further expanded in 2008 with the implementation of the Spiral 
Archimedes Test to assess manual precision. In 2009, a quantitative 
gait assessment using an electronic walkway at the research center 
was implemented in the core study protocol.

Purdue Pegboard Test
For the Purdue Pegboard Test, participants were asked to place as 
many as possible cylindrical metal pegs into one of the 25 holes in 
a pegboard in 30 seconds in 3 separate trials, using their left hand 
only, right hand only, and both hands simultaneously, measuring fine 
motor function (33). The test–retest reliability of assessments has 
been established previously. The outcome variable was the sum score 
of Purdue Pegboard Test score of these 3 trials, with a maximum of 
75 points.

Archimedes Spiral Test
The Archimedes Spiral Test measures fine motor function by re-
quiring participants to trace a picture of a spiral template that was 
printed on paper attached to an electronic drawing board (WACOM 
Graphire Wireless Pen Tablet, model CTE-630BT) (7). Participants 

were instructed to trace the spiral as accurately and as fast as pos-
sible using a special pen with their dominant hand, starting in the 
middle (Supplementary Figure 1). Automatic quantitative analyses 
were done using custom-made software written in MatLab (ver-
sion 8.1; The Mathworks, Natick, MA), and processed and visually 
inspected by 2 trained physicians (S.L.  and S.K.L.D.) for analyses 
(intraclass correlation coefficient [ICC] for interrater reliability for 
all test components >0.95). A  smoothly drawn spiral would have 
a length of drawing about 56 cm (the length of the template) with 
little deviation from the template, a low variability in speed, and no 
crossings (Supplementary Figure 1). The mean amplitude in devi-
ation from the template to spiral drawing (cm) was used as outcome, 
since it is sensitive to capture small differences in fine motor function 
(7). A higher deviation indicates worse performance.

Gait Assessment
Gait was evaluated using a 5.79 m long walkway (GAITRite 
Platinum; CIR systems, Sparta, NJ: 4.88m active area; 120-Hz sam-
pling rate) (21). The reliability and validity of assessments obtained 
with this device have previously been established (34). The stand-
ardized gait protocol comprises 3 walking conditions: normal 
walk, turning, and tandem walk. In the normal walk, participants 
walked at their usual pace across the walkway. In turning, partici-
pants walked at their usual pace, turned halfway, and returned to 
the starting position. In the tandem walk, participants walked heel-
to-toe on a line across the walkway. Based on the recorded foot-
falls, the walkway software calculated 30 parameters, including 25 
from the normal walk, 2 from turning, and 3 from the tandem walk. 
In Supplementary Table 1, we provide descriptions of the 30 gait 
parameters.

To summarize these 30 gait parameters into several independent 
domains, we log-transformed skewed gait parameters to obtain a 
normal distribution, and subsequently standardized all continuous 
gait parameters. Next, we conducted a principal component ana-
lysis with Varimax rotation to derive gait domains, as previously 
described (35). This yielded 7 gait domains with an eigenvalue >1, 
which we labeled in accordance with the gait parameter that had 
the highest correlation coefficient with the corresponding domain: 
rhythm (step time), variability (standardized step length), phases 
(double support), pace (velocity), tandem (sum of step distance), 
turning (turning time), and base of support (stride width) (35). 
These gait domains are illustrated in Supplementary Figure 2. Higher 
values of the gait domains except “pace”, represent worse gait per-
formance. Based on these 7 gait domains, the Purdue Pegboard Test, 
and the Archimedes Spiral Test, a total of 9 different facets of motor 
function were available for analysis.

Assessment of Study Population Characteristics
During home interviews, educational level was assessed and categor-
ized as primary education (“primary”), lower/intermediate general 
education or lower vocational education (“lower”), intermediate 
vocational education or higher general education (“intermediate”), 
and higher vocational education or university (“higher”). Smoking 
and alcohol habits were assessed during the same home interviews. 
Participants were categorized as current, former, or never smokers. 
Alcohol habits were classified into any use or no use of alcohol. At 
the research center, height and weight were measured from which the 
body mass index (BMI; kg/m2) was computed. Blood pressure was 
measured twice in sitting position on the right arm using a random-
zero sphygmomanometer, and the average of 2 measurements was 
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used. In addition, non-fasting blood samples were collected and glu-
cose levels were determined. In the initial subcohort, type 2 diabetes 
was defined as a random or post-load serum glucose concentration 
≥11.1 mmol/L, or the use of drugs to lower blood glucose. In the 
first and second extension subcohorts, type 2 diabetes was defined 
as a fasting serum glucose concentration ≥7.0 mmol/L, a non-fasting 
serum glucose concentration ≥11.1 mmol/L (only if fasting serum 
was unavailable), or usage of blood glucose lowering drugs. APOE 
genotype was determined using polymerase chain reaction on coded 
DNA samples in the initial cohort and with a bi-allelic TaqMan 
assay in the 2 extensions (36,37). APOE ε4 carrier status was de-
fined as carrier of one or 2 APOE ε4 alleles.

Statistical Analysis
We assessed trajectories of cognitive and motor function using linear 
mixed models with random intercepts and slopes. If models did not 
converge with both random intercepts and slopes, only a random 
intercept was used. Age of the participant at time of cognitive or 
motor function assessment was used as underlying time scale. To 
capture possible nonlinearity, we included natural cubic splines of 
age with 1, 2, or 3 knots, depending on model performance deter-
mined by a likelihood ratio test (p < .05). Knots were defined at the 
median, tertiles, or quartiles for, respectively, 1, 2, or 3 knots. We 
only reported p-values for each of the age intervals, since appro-
priate interpretation of effect estimates is hindered by the inclusion 
of natural cubic splines in the models. Skewed test outcomes (ie, 
Stroop Tests, Word Learning Test Recognition subtask, Archimedes 
Spiral Test, and gait domains “variability” and “tandem”) were nat-
ural log-transformed to reach an approximate normal distribution, 
and were back-transformed for visualization. In addition, we visu-
alized trajectories of cognitive and motor function by sex, educa-
tion, or both, using interaction terms on the additive scale between 
age and sex, age and educational level, and age with sex and educa-
tional level. Missing data on education level (1.1%) were imputed 
by chained equations with 5 iterations. We generated one imputed 
dataset based on age at baseline and sex. Furthermore, we assessed 
trajectories for APOE ε4 carriers and non-carriers separately by 
including an interaction term between age and APOE ε4 status. This 
analysis was limited to the participants with known APOE ε4 status 
(N participants = 8986 for cognitive tests and N participants = 7835 
for motor tests).

Next, we repeated these analyses by standardizing the cognitive 
and motor test results to the test performance of the age of 45 years 
(study baseline) to investigate the temporal course of change across 
tests with aging. Skewed test outcomes were natural log-transformed 
before standardization. We depicted a threshold of decline in per-
formance of 0.5 and 1.0 SD compared to the test score at age 
45 years. We subsequently assessed the age at which the test score 
had reached a decline of 0.5 and 1.0 SD compared to the test result 
at age 45 years.

Data were analyzed with SPSS Statistics version 24.0 (IBM Corp., 
Armonk, NY) and R, CRAN version 3.4.3 “mice” and “nlme” pack-
ages (38,39).

Results

Characteristics of the study population at time of study entry are 
presented in Table 1. A total of 9514 participants contributed to the 
cognitive function assessments. The mean (SD) age at first cogni-
tive assessment was 64.7 years (9.5 years) and 5442 (57.2%) of the 

participants were women. Of all participants, 2058 (21.6%) had a 
single cognitive assessment, 4362 (45.8%) had 2, 1174 (12.3%) had 
3, and 1920 (20.2%) had at least 4 cognitive assessments. The mean 
interval between tests was 5.1 years (1.4 years). During follow-up up 
to January 1, 2016, 2977 of 9514 participants (31.3%) died.

A total of 8297 participants contributed to the motor function 
assessments with a mean (SD) age at first assessment of 64.6 years 
(10.0 years), of whom 4737 (57.1%) were women (Table 1). Out of 
these participants, 2136 (25.7%) had a single motor function assess-
ment, 4192 (50.5%) had 2, 1091 (13.1%) had 3, and 878 (10.6%) 
had 4 motor assessments with a mean (SD) test interval of 5.4 years 
(1.4  years). Out of 8297 participants, 1903 died (22.9%) during 
follow-up. The number of participants per cognitive and motor test 
is shown in Supplementary Table 2. Supplementary Table 3 shows 
the characteristics of the excluded participants. Overall, excluded 
participants were older at study entry, attained more often a lower 
level of education, and had a higher mean systolic blood pressure 
than included participants.

Trajectories of Cognitive Function
Performance on the cognitive tests declined with advancing age. 
Decline on cognitive tests was generally linear between ages 45 and 
65 years, followed by a steeper, nonlinear decline. Men had higher 
scores on most cognitive tests and generally declined less fast than 
women (p = .003 for Letter-Digit Substitution Test, p = .02 for Word 
Learning Test: Immediate recall, p = 0.05 for Word Learning Test: 
Delayed recall). These differences between men and women disap-
peared after assessing the trajectories per educational level, sug-
gesting that this sex difference was largely attributable to differences 
in the level of attained education between men and women. As such, 
results from here onwards are presented per educational level for 
men and women combined.

For each higher level of attained education, participants 
showed better performance on all cognitive tests at age 45 years 
(Figure  1 and Supplementary Figure 3). Differences in trajec-
tories of cognitive function between participants with “primary” 
educational level and participants with other educational levels 
became larger with advancing age, albeit not statistically signifi-
cant. Furthermore, participants with “higher” education declined 
slower than those with “primary” education over time on the 
Interference subtask of the Stroop Test (p = .002, Figure 1) and the 
Word Learning Test Recognition subtask (p = .017, Supplementary 
Figure 3). However, they declined faster than participants with 
“primary” education on the Word Fluency Test (p = .048, Figure 1) 
and the Word Learning Test Delayed recall subtask (p  =  .007, 
Supplementary Figure 3).

Regarding APOE ε4 carrier status, carriers declined faster on all 
cognitive tests than non-carriers (p for interaction between age and 
APOE ε4 carrier status <.005), except on the Design Organization 
Test that showed similar trajectories for carriers and non-carriers 
(Supplementary Figure 4).

Trajectories of Motor Function
Trajectories of decline in motor function varied across different 
motor tests (Figure 2 and Supplementary Figure 3) with the gait do-
main “phases” and the Purdue Pegboard Test declining first at the age 
of 56 and 60 years, respectively. Performance on the gait domains 
“rhythm,” “tandem,” and “base of support” remained largely stable 
over time. Significant differences between men and women were only 
found for trajectories of the domain “tandem” and “phases,” with 
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women performing increasingly worse over age than men (p = .005 
for “tandem” and p < .001 for “phases”).

In contrast to the effects of education on cognitive function, 
motor function trajectories were not associated with educational 
level (Figure 2 and Supplementary Figure 3), but those with a “pri-
mary” educational level performed better over time on the Purdue 
Pegboard Test than participants with other educational levels (p 
< .016, Figure 2). In addition, they decreased less fast on the gait 
domains “rhythm,” “phases,” and “turning” than participants 
with higher education levels (p for all tests <.039, Figure  2 and 
Supplementary Figure 3).

APOE ε4 carriers performed worse with advancing age than 
non-carriers on the Purdue Pegboard Test and on the gait param-
eters “phases,” and “turning” (p for all tests <.034, Supplementary 
Figure 4).

Sequence of Change in Cognitive and Motor 
Function
Before the age of 75  years, most cognitive and motor test scores 
had reached a decline of 0.5 SD in standardized test score compared 
to test scores at age 45  years (Figure 3). Considering both cogni-
tive and motor tests, the decline of 0.5 SD was first reached for the 
Stroop Test Interference subtask at the age of 58  years. This was 
followed by the Design Organization Test at the age of 59 years and 
the Stroop Test Naming subtask at the age of 64 years. Of all motor 
tests, the gait domain “phases” showed the fastest decline, reaching 
a 0.5 SD decrease in test score at the age of 58 years. Across all tests, 
the average time between the age of 45 years and the age at which 
0.5 SD decrease in test score was reached, was shorter for cognitive 

tests than for motor tests (20.0 vs 24.7 years, respectively, p = .039). 
By contrast, the time between 0.5 SD and 1.0 SD decrease in test 
scores was longer for cognitive compared to motor tests (11.2 years 
vs 8.9 years, respectively, p < .001).

Discussion

In this population-based study, we showed that both cognitive and 
motor function generally decline linearly between the ages of 45 and 
65 years, followed by a steeper decline after the age of 65–70 years. 
Test scores for cognitive and motor function declined similarly, with 
high variation in the rate of decline across age for individual tests. 
Importantly, whereas a higher level of education was associated with 
higher cognitive function, there was no association between level of 
education and function on the majority of the motor tests.

Various studies have reported changes in cognitive function with 
aging, but evidence on the temporal relation between change in cog-
nitive compared to motor function is limited. Most evidence comes 
from memory clinics (11), or from studies that solely rely on gait 
speed to assess motor function (11,19,40–44). These studies have 
closely linked global cognitive function to gait speed. As yet, no 
studies have investigated differences in performance on specific cog-
nitive tests nor studied other facets of motor function, such as fine 
motor skill. These knowledge gaps remain unaddressed since prior 
studies found that decline of cognitive and motor function may vary, 
or that one may predate the other (12,45–47). Most of these studies 
were conducted in older participants (aged 70 years and older), with 
a limited sample size (varying between 488 and 2276 participants), 
or with relatively short follow-up (ranging from 5 to 7 years). The 

Table 1.  Characteristics of the Study Populations

Characteristic Analysis of Cognitive Function (N = 9514) Analysis of Motor Function (N = 8297)

Age at study entry, years, mean (SD) 62.0 (7.9) 60.9 (7.4)
Age at first assessment, years, mean (SD) 64.7 (9.5) 64.6 (10.0)
Sex, women, n (%) 5442 (57.2) 4737 (57.1)
Educational level, n (%)   
  Primary 1160 (12.2) 886 (10.7)
  Lower 3889 (40.9) 3375 (40.7)
  Intermediate 2751 (28.9) 2422 (29.2)
  Higher 1714 (18.0) 1614 (19.5)
Number of assessmentsa, n (%)   
  1 2058 (21.6) 2136 (25.7)
  2 4362 (45.8) 4192 (50.5)
  3 1174 (12.3) 1091 (13.1)
  ≥4 1920 (20.2) 878 (10.6)
Median number of assessments (range) 2 (1–6) 2 (1–4)
Test assessment interval, years, mean (SD) 5.1 (1.4) 5.4 (1.4)
Body mass index, kg/m2, mean (SD) 27.0 (4.1) 27.1 (4.2)
Smoking, n (%)   
  Never 2941 (30.9) 2522 (30.4)
  Past 4558 (47.9) 4063 (49.0)
  Current 1944 (20.4) 1663 (20.0)
Alcohol use, n (%) 7760 (81.6) 6928 (83.5)
Systolic blood pressure, mm Hg, mean (SD) 136 (20.8) 136 (20.6)
Type 2 diabetes, n (%) 865 (9.1) 735 (8.9)
APOE ε4 carrier, n (%) 2539 (26.7) 2217 (26.7)

Notes: APOE = apolipoprotein E; N = number of participants. Characteristics were measured at study entry except for age at first assessment. Missing values 
for all characteristics but educational level are not imputed and therefore numbers do not always sum up to 100%.

aGait was considered as one assessment, because virtually all participants (95%) with an available gait assessment had complete values for all underlying gait 
parameters. Therefore, the presented number of motor assessments is independent from the number of underlying available gait parameters that were used to 
compute 7 gait domains.
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current study is able to extend these findings by leveraging a detailed 
set of cognitive and motor tests among a broader age range (ages 
45–90 years) in a larger, population-based sample (N ≥ 8297) with 
up to 6 repeated assessments during a maximum follow-up of 
19.4 years.

We did not find distinct patterns of an overall decline in cog-
nitive function preceding motor function or vice versa, yet we 
observed large variability in test-specific decline. For instance, ten-
dency to shuffle (“phases” gait domain) and fine motor function 
generally started to show initial signs of decline up to 25  years 
earlier than widely used cognitive (screening) tests, such as the 
Word Learning Tests Delayed recall and Recognition (11,40–
42,48). These findings may be explained by accelerating changes 

in brain structure during aging, with loss of white matter pre-
ceding loss of gray matter (20,49). We indeed observed the earliest 
changes in cognitive and motor domains that depend on white 
matter integrity, including information processing speed, execu-
tive function, and the gait domain “phases” (20,50–52). In con-
trast, cognitive and motor domains related to alterations in gray 
matter volume (ie, memory and the gait domain “base of sup-
port”) showed a later decline in function than those related to 
white matter integrity (20,51–53).

Variability in test-specific decline may also be explained by 
diseases and common comorbidities in these older adults, such as 
cardiovascular diseases, depression, respiratory diseases, cancer, or 
impairments in sensory organs (54–57). These may differentially 

Figure 1.  Trajectories of cognitive function. The thick black continuous line reflects the trajectory of performance for the total study population based on the 
results of the linear mixed model; the black dotted lines represent the 10th and 90th percentile curves. Only cognitive tests most commonly studied in studies 
of cognitive aging are presented in this Figure. The remaining cognitive tests are shown in Supplementary Figure 3. aHigher scores indicate worse performance. 
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influence cognitive compared to motor function in some individuals. 
As an example, presence of peripheral artery disease or arthrosis 
limits walking speed, but does not directly influences executive 
functioning as assessed by the Stroop Task (58). The contribution 
of these potentially modifiable determinants to sequence of test-
specific decline and the shape of these trajectories was beyond the 
scope of the present study, and warrants further investigation using 
more advanced statistical models.

As expected, we found that participants with a higher educa-
tional level had higher baseline scores (scores at age 45 years) for 
cognitive tests than participants with a lower educational level. 
Regarding the rate of change in cognitive function, we found that 
participants with a “primary” educational level declined faster on 

most tests than higher educated participants. The declines over 
time were largely similar among “lower,” “intermediate,” and 
“higher” educated participants. This implies that higher educated 
individuals are generally older when they reach the same cognitive 
test performance than lower educated individuals. As an example, 
comparing performance between lower and higher educated parti-
cipants on the Word Learning Test Delayed subtask score, reveals 
that at age 45 years, the lowest educated individuals remembered 
on average 8 of the 15 originally presented words after 10 min-
utes. The highest educated individuals, however, attained this same 
score when they were on average 73 years. Yet, no association was 
found between educational level and motor function for the ma-
jority of the motor tests. These findings support emerging evidence 

Figure 2.  Trajectories of motor function. The thick black continuous line reflects the trajectory of performance for the total study population based on the results 
of the linear mixed model; the black dotted lines represent the 10th and 90th percentile curves. Only gait domains most strongly related to are presented in this 
figure. The Archimedes Spiral Test and remaining gait domains are shown in Supplementary Figure 3. aHigher scores indicate worse performance.

Journals of Gerontology: MEDICAL SCIENCES, 2021, Vol. 76, No. 2� 303
D

ow
nloaded from

 https://academ
ic.oup.com

/biom
edgerontology/article/76/2/297/5880609 by guest on 10 February 2021

http://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/glaa187#supplementary-data


that cognitive reserve, operationalized by for example educational 
attainment, could have long-lasting compensatory effects on cog-
nitive but not on motor function, with the potential to postpone 
cognitive decline and thereby the clinical diagnosis of dementia 
(59–61).

Limitations and Strengths
This study has several limitations. First, given that participants 
underwent most cognitive tests at the research center, we cannot ex-
clude that selection bias may have influenced our results, with those 
who are considered less healthy being less likely to participate. 
Therefore, the presented test scores on cognitive and motor function 
may be an overestimation of the true performance in the general 
population, especially for those at older ages (62). Second, repetitive 
administering of cognitive tests can lead to learning effects, which 
could have led to overestimating performance with increasing age. 
However, these effects are expected to be limited, since the median 
test interval was 5.1 years for cognitive assessments and 5.4 years 
for motor assessments. Third, in the early nineties, the completed 
level of education was determined by several factors including sex 
and social economic status. As such, educational attainment in this 
study may not be a proper proxy for cognitive reserve in women. 
Lastly, we estimated trajectories of cognitive and motor function 
on a population level, yet deviations from this pattern on an in-
dividual level may signal an under recognized group at high risk 
for neurodegenerative diseases and stroke. Strengths of this study 
include the large sample size and the repeated and simultaneous as-
sessments of cognitive and motor function in a single, community-
dwelling population.

Conclusions

In this study, we present trajectories of decline of both cognitive 
and motor functioning among individuals aged 45–90 years in the 
general population. Such data are essential to understand the nat-
ural course of cognitive and motor function during aging. Cognitive 
and motor function decline similarly during aging, characterized by 
a linear decline between the ages of 45 and 65, and a steeper decline 
thereafter. Higher educational attainment was related to higher cog-
nitive function at baseline and to a slower rate of subsequent decline, 
but it did not affect motor function. In the sequence of decline across 
individual tests, up to a 25-year age difference between the fastest 
and slowest declining test scores was observed.

Supplementary Material

Supplementary data are available at The Journals of Gerontology, 
Series A: Biological Sciences and Medical Sciences online.
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