11 research outputs found

    Omineca Herald, April, 10, 1925

    Get PDF
    Purpose: The purpose of the study is to identify demographic, clinical, lifestyle-related, and social-cognitive correlates of physical activity (PA) intention and behavior in head and neck cancer (HNC) survivors using the theory of planned behavior (TPB). Methods: Data from two cross-sectional studies on correlates of PA in HNC survivors were pooled. Both studies used self-reports to assess PA and social-cognitive correlates. Potential correlates were collected via self-report or medical records. Univariable and multivariable multilevel linear mixed-effects models were built to identify correlates of PA intention and PA behavior (Z scores). Structural equation model analyses were conducted to study the full TPB model in one analysis, taking into account relevant covariates. Results: In total, 416 HNC survivors were surveyed. Their mean (SD) age was 66.6 (9.4) years; 64% were men, and 78% were diagnosed with laryngeal cancer. The structural equation model showed that PA intention was significantly higher in HNC survivors with a history of exercising, who had a more positive attitude, subjective norm, and perceived behavioral control. Patients with higher PA intention, higher PBC, a lower age, and without unintentional weight loss or comorbidities had higher PA behavior. The model explained 22.9% of the variance in PA intention and 16.1% of the variance in PA behavior. Conclusions: Despite significant pathways of the TPB model, the large proportion variance in PA intention and behavior remaining unexplained suggests the need for better PA behavior (change) models to guide the development of PA promotion programs, particularly for the elderly. Such programs should be tailored to comorbidities and nutritional status

    5-Ethynyluridine: A Bio-orthogonal Uridine Variant for mRNA-Based Therapies and Vaccines

    Get PDF
    The identification of pseudo- and N1-methylpseudo-uridine (Ψ and mΨ, respectively) as immunosilent uridine analogues has propelled the development of mRNA-based vaccines and therapeutics. Here, we have characterised another uridine analogue, 5-ethynyluridine (EU), which has an ethynyl moiety. We show that this uridine analogue does not cause immune activation in human macrophages, as it does not induce interleukin-6 secretion or expression of the inflammatory and antiviral genes MX1, PKR, and TAP2. Moreover, EU allows for prolonged expression, as shown with mRNA coding for yellow fluorescent protein (YFP). Side-by-side comparisons of EU with unmodified, Ψ, and mΨ revealed that EU-modified mRNA is expressed at lower levels, but confers similar stability and low immunogenicity to the other uridine analogues. Furthermore, structure analysis of modified mRNAs suggests that the observed phenotype is largely independent of RNA folding. Thus, EU is a potential candidate for RNA-based vaccines and therapeutics

    Deciphering the Non-Coding RNA Landscape of Pediatric Acute Myeloid Leukemia

    Full text link
    Pediatric acute myeloid leukemia (pedAML) is a heterogeneous blood cancer that affects children. Although survival rates have significantly improved over the past few decades, 20–30% of children will succumb due to treatment-related toxicity or relapse. The molecular characterization of the leukemic stem cell, shown to be responsible for relapse, is needed to improve treatment options and survival. Recently, it has become clear that non-coding RNAs, including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), play a role in the development of human diseases, including pediatric cancer. Nevertheless, non-coding RNA expression data in pedAML are scarce. Here, we explored lncRNA (n = 30168) and miRNA (n = 627) expression in pedAML subpopulations (leukemic stem cells (LSCs) and leukemic blasts (L-blasts)) and their normal counterparts (hematopoietic stem cells and control myeloblasts). The potential regulatory activity of differentially expressed lncRNAs in LSCs (unique or shared with the L-blast comparison) on miRNAs was assessed. Moreover, pre-ranked gene set enrichment analyses of (anti-) correlated protein-coding genes were performed to predict the functional relevance of the differentially upregulated lncRNAs in LSCs (unique or shared with the L-blast comparison). In conclusion, this study provides a catalog of non-coding RNAs with a potential role in the pathogenesis of pedAML, paving the way for further translational research studies

    Demographic, clinical, lifestyle-related, and social-cognitive correlates of physical activity in head and neck cancer survivors

    No full text
    PURPOSE: The purpose of the study is to identify demographic, clinical, lifestyle-related, and social-cognitive correlates of physical activity (PA) intention and behavior in head and neck cancer (HNC) survivors using the theory of planned behavior (TPB). METHODS: Data from two cross-sectional studies on correlates of PA in HNC survivors were pooled. Both studies used self-reports to assess PA and social-cognitive correlates. Potential correlates were collected via self-report or medical records. Univariable and multivariable multilevel linear mixed-effects models were built to identify correlates of PA intention and PA behavior (Z scores). Structural equation model analyses were conducted to study the full TPB model in one analysis, taking into account relevant covariates. RESULTS: In total, 416 HNC survivors were surveyed. Their mean (SD) age was 66.6 (9.4) years; 64% were men, and 78% were diagnosed with laryngeal cancer. The structural equation model showed that PA intention was significantly higher in HNC survivors with a history of exercising, who had a more positive attitude, subjective norm, and perceived behavioral control. Patients with higher PA intention, higher PBC, a lower age, and without unintentional weight loss or comorbidities had higher PA behavior. The model explained 22.9% of the variance in PA intention and 16.1% of the variance in PA behavior. CONCLUSIONS: Despite significant pathways of the TPB model, the large proportion variance in PA intention and behavior remaining unexplained suggests the need for better PA behavior (change) models to guide the development of PA promotion programs, particularly for the elderly. Such programs should be tailored to comorbidities and nutritional status

    Intrinsic defects in erythroid cells from familial hemophagocytic lymphohistiocytosis type 5 patients identify a role for STXBP2/Munc18-2 in erythropoiesis and phospholipid scrambling

    No full text
    Familial hemophagocytic lymphohistiocytosis type 5 (FHL-5) is a rare genetic disorder caused by mutations in STXBP2/Munc18-2. Munc18-2 plays a role in the degranulation machinery of natural killer cells and cytotoxic T lymphocytes. Mutations in STXBP2/Munc18-2 lead to impaired killing of target cells by natural killer cells and cytotoxic T lymphocytes, which in turn results in elevated levels of the inflammatory cytokine interferon γ, macrophage activation, and hemophagocytosis. Even though patients with FHL-5 present with anemia and hemolysis, no link between the disease and the erythroid lineage has been established. Here we report that red blood cells express Munc18-2 and that erythroid cells from patients with FHL-5 exhibit intrinsic defects caused by STXBP2/Munc18-2 mutations. Red blood cells from patients with FHL-5 expose less phosphatidylserine on their surface upon Ca(2+) ionophore ionomycin treatment. Furthermore, cultured erythroblasts from patients with FHL-5 display defective erythropoiesis characterized by decreased CD235a expression and aberrant cell morphology

    Intrinsic defects in erythroid cells from familial hemophagocytic lymphohistiocytosis type 5 patients identify a role for STXBP2/Munc18-2 in erythropoiesis and phospholipid scrambling

    No full text
    Familial hemophagocytic lymphohistiocytosis type 5 (FHL-5) is a rare genetic disorder caused by mutations in STXBP2/Munc18-2. Munc18-2 plays a role in the degranulation machinery of natural killer cells and cytotoxic T lymphocytes. Mutations in STXBP2/Munc18-2 lead to impaired killing of target cells by natural killer cells and cytotoxic T lymphocytes, which in turn results in elevated levels of the inflammatory cytokine interferon gamma, macrophage activation, and hemophagocytosis. Even though patients with FHL-5 present with anemia and hemolysis, no link between the disease and the erythroid lineage has been established. Here we report that red blood cells express Munc18-2 and that erythroid cells from patients with FHL-5 exhibit intrinsic defects caused by STXBP2/Munc18-2 mutations. Red blood cells from patients with FHL-5 expose less phosphatidylserine on their surface upon Ca2+ ionophore ionomycin treatment. Furthermore, cultured erythroblasts from patients with FHL-5 display defective erythropoiesis characterized by decreased CD235a expression and aberrant cell morphology. Copyright (C) 2015 ISEH - International Society for Experimental Hematology. Published by Elsevier In

    Case-Control Breast Cancer Study of MALDI-TOF Proteomic Mass Spectrometry Data on Serum Samples

    No full text
    We introduce mass spectrometry proteomic research for diagnosis from a clinical perspective, with special reference to early-stage breast cancer detection. The nature of SELDI and MALDI mass spectrometric measurement is discussed. We explain how the mass spectral data arising from this technology may be viewed as a new data type. Some of the properties of the data are discussed and we show how such spectra may be interpreted. Sample preprocessing for mass spectrometry is introduced and a literature review of research in clinical proteomics is presented. Finally, we provide a detailed description of the study design on the breast cancer case-control study which is investigated in this special issue.

    Deciphering the non-coding landscape of pediatric acute myeloid leukemia

    No full text
    Pediatric acute myeloid leukemia (pedAML) is a heterogeneous blood cancer that affects children. Although survival rates have significantly improved over the past few decades, 20–30% of children will succumb due to treatment-related toxicity or relapse. The molecular characterization of the leukemic stem cell, shown to be responsible for relapse, is needed to improve treatment options and survival. Recently, it has become clear that non-coding RNAs, including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), play a role in the development of human diseases, including pediatric cancer. Nevertheless, non-coding RNA expression data in pedAML are scarce. Here, we explored lncRNA (n = 30,168) and miRNA (n = 627) expression in pedAML subpopulations (leukemic stem cells (LSCs) and leukemic blasts (L-blasts)) and their normal counterparts (hematopoietic stem cells and control myeloblasts). The potential regulatory activity of differentially expressed lncRNAs in LSCs (unique or shared with the L-blast comparison) on miRNAs was assessed. Moreover, pre ranked gene set enrichment analyses of (anti-) correlated protein-coding genes were performed to predict the functional relevance of the differentially upregulated lncRNAs in LSCs (unique or shared with the L-blast comparison). In conclusion, this study provides a catalog of non-coding RNAs with a potential role in the pathogenesis of pedAML, paving the way for further translational research studies
    corecore