4,939 research outputs found

    Cooling lines as probes of the formation and buildup of galaxies and black holes

    Full text link
    We discuss the use of SPICA to study the cosmic history of star formation and accretion by supermassive black holes. The cooling lines, in particular the high-J rotational lines of CO, provide a clear-cut and unique diagnostic for separating the contributions of star formation and AGN accretion to the total infrared luminosity of active, gas-rich galaxies. We briefly review existing efforts for studying high-J CO emission from galaxies at low and high redshift. We finally comment on the detectability of cooling radiation from primordial (very low metallicity) galaxies containing an accreting supermassive black hole with SPICA/SAFARI.Comment: to appear in the proceedings of "The Space Infrared Telescope for Cosmology & Astrophysics: Revealing the Origins of Planets and Galaxies", Oxford, July 2-8, 200

    Gravitationally lensed radio emission associated with SMM J16359+6612, a multiply imaged submillimeter galaxy behind A2218

    Get PDF
    We report the detection of discrete, lensed radio emission from the multiply imaged, z=2.516 submillimetre selected galaxy, SMM J16359+6612. All three images are detected in deep WSRT 1.4 GHz and VLA 8.2 GHz observations, and the radio positions are coincident with previous sub-mm SCUBA observations of this system. This is the widest separation lens system to be detected in the radio so far, and the first time that multiply imaged lensed radio emission has been detected from a star forming galaxy -- all previous multiply-lensed radio systems being associated with radio-loud AGN. Taking into account the total magnification of ~45, the WSRT 1.4 GHz observations suggest a star formation rate of 500 Solar mass/yr. The source has a steep radio spectrum (alpha -0.7) and an intrinsic flux density of just 3 microJy at 8.2 GHz. Three other SCUBA sources in the field are also detected by the WSRT, including SMMJ16359+66118, a singly imaged (and magnified) arclet at z=1.034. Higher resolution radio observations of SMMJ16359+6612 (and other highly magnified star forming galaxies) provide a unique opportunity to study the general properties and radio morphology of intrinsically faint, distant and obscured star forming galaxies. They can also help to constrain the technical specification of next generation radio telescopes, such as the Square Kilometre Array.Comment: 5 pages, 2 figures, to appear in A&A letter

    On the risk of extinction of a wild plant species through spillover of a biological control agent: analysis of an ecosystem compartment model

    Get PDF
    Invasive plant species can be controlled by introducing one or more of their natural enemies (herbivores) from their native range; however such introduction entails the risk that the introduced natural enemy will attack indigenous plant species in the area of introduction. The effect of spillover of a natural enemy from a managed ecosystem compartment (agriculture) in the area of introduction to a natural compartment (non-managed) in which an indigenous plant species is attacked by the introduced natural enemy, whereas another indigenous plant species, which competes with the first, is not attacked, has been studied. The combination of competition and herbivory may result in extinction of the attacked wild plant species. Using a modelling approach, the authors have determined model parameters that characterize the risk of extinction. The findings point to the importance of spillover and the relative attack rates (specificity) of introduced natural enemies with respect to target and non-target plant specie

    Neutral carbon and CO in 76 (U)LIRGs and starburst galaxy centers A method to determine molecular gas properties in luminous galaxies

    Get PDF
    We present fluxes in both neutral carbon [CI] lines at the centers of 76 galaxies with FIR luminosities between 10^{9} and 10^{12} L(o) obtained with Herschel-SPIRE and with ground-based facilities, along with the J=7-6, J=4-3, J=2-1 12CO and J=2-1 13CO line fluxes. We investigate whether these lines can be used to characterize the molecular ISM of the parent galaxies in simple ways and how the molecular gas properties define the model results. In most starburst galaxies, the [CI]/13CO flux ratio is much higher than in Galactic star-forming regions, and it is correlated to the total FIR luminosity. The [CI](1-0)/CO(4-3), the [CI](2-1) (2-1)/CO(7-6), and the [CI] (2-1)/(1-0) flux ratios are also correlated, and trace the excitation of the molecular gas. In the most luminous infrared galaxies (LIRGs), the ISM is fully dominated by dense and moderately warm gas clouds that appear to have low [C]/[CO] and [13CO]/[12CO] abundances. In less luminous galaxies, emission from gas clouds at lower densities becomes progressively more important, and a multiple-phase analysis is required to determine consistent physical characteristics. Neither the CO nor the [CI] velocity-integrated line fluxes are good predictors of H2 column densities in individual galaxies, and X(CI) conversion factors are not superior to X(CO) factors. The methods and diagnostic diagrams outlined in this paper also provide a new and relatively straightforward means of deriving the physical characteristics of molecular gas in high-redshift galaxies up to z=5, which are otherwise hard to determine

    The excitation of near-infrared H2 emission in NGC 253

    Full text link
    Because of its large angular size and proximity to the Milky Way, NGC 253, an archetypal starburst galaxy, provides an excellent laboratory to study the intricacies of this intense episode of star formation. We aim to characterize the excitation mechanisms driving the emission in NGC 253. Specifically we aim to distinguish between shock excitation and UV excitation as the dominant driving mechanism, using Br\gamma, H_2 and [FeII] as diagnostic emission line tracers. Using SINFONI observations, we create linemaps of Br\gamma, [FeII]_{1.64}, and all detected H_2 transitions. By using symmetry arguments of the gas and stellar gas velocity field, we find a kinematic center in agreement with previous determinations. The ratio of the 2-1 S(1) to 1-0 S(1) H_2 transitions can be used as a diagnostic to discriminate between shock and fluorescent excitation. Using the 1-0 S(1)/2-1 S(1) line ratio as well as several other H_2 line ratios and the morphological comparison between H_2 and Br\gamma and [FeII], we find that excitation from UV photons is the dominant excitation mechanisms throughout NGC 253. We employ a diagnostic energy level diagram to quantitatively differentiate between mechanisms. We compare the observed energy level diagrams to PDR and shock models and find that in most regions and over the galaxy as a whole, fluorescent excitation is the dominant mechanism exciting the H_2 gas. We also place an upper limit of the percentage of shock excited H_2 at 29%. We find that UV radiation is the dominant excitation mechanism for the H_2 emission. The H_2 emission does not correlate well with Br\gamma but closely traces the PAH emission, showing that not only is H_2 fluorescently excited, but it is predominately excited by slightly lower mass stars than O stars which excite Br\gamma, such as B stars

    On measuring the Tully-Fisher relation at z>1z > 1

    Full text link
    The evolution of the line width - luminosity relation for spiral galaxies, the Tully-Fisher relation, strongly constrains galaxy formation and evolution models. At this moment, the kinematics of z>1 spiral galaxies can only be measured using rest frame optical emission lines associated with star formation, such as Halpha and [OIII]5007/4959 and [OII]3727. This method has intrinsic difficulties and uncertainties. Moreover, observations of these lines are challenging for present day telescopes and techniques. Here, we present an overview of the intrinsic and observational challenges and some ways way to circumvent them. We illustrate our results with the HST/NICMOS grism sample data of z ~ 1.5 starburst galaxies. The number of galaxies we can use in the final Tully-Fisher analysis is only three. We find a ~2 mag offset from the local rest frame B and R band Tully-Fisher relation for this sample. This offset is partially explained by sample selection effects and sample specifics. Uncertainties in inclination and extinction and the effects of star formation on the luminosity can be accounted for. The largest remaining uncertainty is the line width / rotation curve velocity measurement. We show that high resolution, excellent seeing integral field spectroscopy will improve the situation. However, we note that no flat rotation curves have been observed for galaxies with z>1. This could be due to the described instrumental and observational limitations, but it might also mean that galaxies at z>1 have not reached the organised motions of the present day.Comment: 13 pages, 7 figures, A&A accepte

    The effect of genomic information on optimal contribution selection in livestock breeding programs

    Get PDF
    BACKGROUND: Long-term benefits in animal breeding programs require that increases in genetic merit be balanced with the need to maintain diversity (lost due to inbreeding). This can be achieved by using optimal contribution selection. The availability of high-density DNA marker information enables the incorporation of genomic data into optimal contribution selection but this raises the question about how this information affects the balance between genetic merit and diversity. METHODS: The effect of using genomic information in optimal contribution selection was examined based on simulated and real data on dairy bulls. We compared the genetic merit of selected animals at various levels of co-ancestry restrictions when using estimated breeding values based on parent average, genomic or progeny test information. Furthermore, we estimated the proportion of variation in estimated breeding values that is due to within-family differences. RESULTS: Optimal selection on genomic estimated breeding values increased genetic gain. Genetic merit was further increased using genomic rather than pedigree-based measures of co-ancestry under an inbreeding restriction policy. Using genomic instead of pedigree relationships to restrict inbreeding had a significant effect only when the population consisted of many large full-sib families; with a half-sib family structure, no difference was observed. In real data from dairy bulls, optimal contribution selection based on genomic estimated breeding values allowed for additional improvements in genetic merit at low to moderate inbreeding levels. Genomic estimated breeding values were more accurate and showed more within-family variation than parent average breeding values; for genomic estimated breeding values, 30 to 40% of the variation was due to within-family differences. Finally, there was no difference between constraining inbreeding via pedigree or genomic relationships in the real data. CONCLUSIONS: The use of genomic estimated breeding values increased genetic gain in optimal contribution selection. Genomic estimated breeding values were more accurate and showed more within-family variation, which led to higher genetic gains for the same restriction on inbreeding. Using genomic relationships to restrict inbreeding provided no additional gain, except in the case of very large full-sib families

    Risk for psychosis : a life span perspective

    Get PDF
    • …
    corecore