26 research outputs found

    Atomic force microscopy of pollen grains, cellulose microfibrils, and protoplasts

    No full text
    Atomic force microscopy (AFM) holds unique prospects for biological microscopy, such as nanometer resolution and the possibility of measuring samples in (physiological) solutions. This article reports the results of an examination of various types of plant material with the AFM. AFM images of the surface of pollen grains of Kalanchoe blossfeldiana and Zea mays were compared with field emission scanning electron microscope (FESEM) images. AFM reached the same resolutions as FESEM but did not provide an overall view of the pollen grains. Using AFM in torsion mode, however, it was possible to reveal differences in friction forces of the surface of the pollen grains. Cellulose microfibrils in the cell wall of root hairs of Raphanus sativus and Z. mays were imaged using AFM and transmission electron microscopy (TEM). Imaging was performed on specimens from which the wall matrix had been extracted. The cell wall texture of the root hairs was depicted clearly with AFM and was similar to the texture known from TEM. It was not possible to resolve substructures in a single microfibril. Because the scanning tip damaged the fragile cells, it was not possible to obtain images of living protoplasts of Z. mays, but images of fixed and dried protoplasts are shown. We demonstrate that AFM of plant cells reaches resolutions as obtained with FESEM and TEM, but obstacles still have to be overcome before imaging of living protoplasts in physiological conditions can be realized

    Expression patterns of endothelial permeability pathways in the development of the blood-retinal barrier in mice.

    No full text
    Insight into the molecular and cellular processes in blood-retinal barrier (BRB) development, including the contribution of paracellular and transcellular pathways, is still incomplete but may help to understand the inverse process of BRB loss in pathologic eye conditions. In this comprehensive observational study, we describe in detail the formation of the BRB at the molecular level in physiologic conditions, using mice from postnatal day (P)3 to P25. Our data indicate that immature blood vessels already have tight junctions at P5, before the formation of a functional BRB. Expression of the endothelial cell-specific protein plasmalemma vesicle-associated protein (PLVAP), which is known to be involved in transcellular transport and associated with BRB permeability, decreased during development and was absent when a functional barrier was formed. Moreover, we show that PLVAP deficiency causes a transient delay in retinal vascular development and changes in mRNA expression levels of endothelial permeability pathway proteins.-Van der Wijk, A.-E., Wisniewska-Kruk, J., Vogels, I. M. C., van Veen, H. A., Ip, W. F., van der Wel, N. N., van Noorden, C. J. F., Schlingemann, R. O., Klaassen, I. Expression patterns of endothelial permeability pathways in the development of the blood-retinal barrier in mice

    Development of medicines for rare diseases and inborn errors of metabolism: Toward novel public-private partnerships

    Get PDF
    Medicine development for rare diseases, including inborn errors of metabolism (IEMs) is challenging. Many academic innovations fail to reach the patient, either by stranding in the translational stage or due to suboptimal patient access related to pricing or uncertain effectiveness. Expanding and solidifying the role of the academic in public-private partnerships (PPPs) may present an innovative solution to help overcome these complexities. This narrative review explores the literature on traditional and novel collaborative approaches to medicine development for rare diseases and analyzes examples of PPPs, with a specific focus on IEMs. Several academic institutions have introduced guidelines for socially responsible licensing of innovations for private development. The PPP model offers a more integrative approach toward academic involvement of medicine development. By sharing risks and rewards, failures in the translational stage can be mutually absorbed. If socially responsible terms are not included, however, high pricing can impede patient access. Therefore, we propose a framework for socially responsible PPPs aimed at medicine development for metabolic disorders. This socially responsible PPP framework could stimulate successful and accessible medicine development for IEMs as well as other rare diseases if the establishment of such collaborations includes terms securing joint data ownership and evidence generation, fast access, and socially responsible pricing

    Mycobacterial Secretion Systems ESX-1 and ESX-5 Play Distinct Roles in Host Cell Death and Inflammasome Activation

    No full text
    During infection of humans and animals, pathogenic mycobacteria manipulate the host cell causing severe diseases such as tuberculosis and leprosy. To understand the basis of mycobacterial pathogenicity, it is crucial to identify the molecular virulence mechanisms. In this study, we address the contribution of ESX-1 and ESX-5 - two homologous type VII secretion systems of mycobacteria that secrete distinct sets of immune modulators - during the macrophage infection cycle. Using wild-type, ESX-1- and ESX-5-deficient mycobacterial strains, we demonstrate that these secretion systems differentially affect subcellular localization and macrophage cell responses. We show that in contrast to ESX-1, the effector proteins secreted by ESX-5 are not required for the translocation of Mycobacterium tuberculosis or Mycobacterium marinum to the cytosol of host cells. However, the M. marinum ESX-5 mutant does not induce inflammasome activation and IL-1b activation. The ESX-5 system also induces a caspase-independent cell death after translocation has taken place. Importantly, by means of inhibitory agents and small interfering RNA experiments, we reveal that cathepsin B is involved in both the induction of cell death and inflammasome activation upon infection with wild-type mycobacteria. These results reveal distinct roles for two different type VII secretion systems during infection and shed light on how virulent mycobacteria manipulate the host cell in various ways to replicate and spread. Copyright © 2011 by The American Association of Immunologists, Inc
    corecore