109 research outputs found

    Nationwide Real-world Cohort Study of First-line Tyrosine Kinase Inhibitor Treatment in Epidermal Growth Factor Receptor-mutated Non-small-cell Lung Cancer

    Get PDF
    Most trials regarding tyrosine kinase inhibitors in patients with advanced epidermal growth factor receptor-mutated non-small-cell lung cancer comprised selected series from Asian populations. We found that Western European patients with epidermal growth factor receptor-mutated non-small-cell lung cancer who received first-line treatment with regular tyrosine kinase inhibitors have a median overall survival of 20.2 months in our large nationwide real-world cohort. In patients with brain metastasis, erlotinib showed superior results compared with gefitinib and was similar to afatinib. Background: Only a few randomized trials directly compared the relative efficacy of tyrosine kinase inhibitors (TKIs) in patients with advanced epidermal growth factor receptor (EGFR)-mutated non-small-cell lung cancer (NSCLC), and most trials comprised selected series from Asian populations. Therefore, the aim of this study was to assess the overall survival (OS) of advanced EGFR-mutated NSCLC in a large white population and to evaluate variation between different TKIs and identify predictors of survival. Patients and Methods: Information about clinical characteristics, treatment, and survival for 873 patients with stage IV EGFR + NSCLC, diagnosed from 2015 through 2017, was derived from the Netherlands Cancer Registry. OS was evaluated by actuarial analysis and multivariable Cox regression. Prognostic factors are reported as hazard ratios and 95% confidence intervals. Results: A total of 596 (68%) patients received first-line treatment with regular TKIs, providing a median survival of 20.2 months. Forty-five percent of patients were 70 years and older, and 54% of patients had distant metastasis in multiple organs. In the multivariate analysis, survival was significantly worse for men, and patients with higher age, poorer performance, and >= 3 organs with metastasis. Compared with erlotinib, OS was worse for gefitinib users (adjusted hazard ratio, 1.30; 95% confidence interval, 1.02-1.64), predominantly in patients with brain metastasis. Conclusion: Dutch patients with EGFR-mutated NSCLC who received first-line treatment with regular TKIs have a median OS of 20.2 months in a nationwide real-world cohort. In patients with brain metastasis, erlotinib showed superior results compared with gefitinib and was similar to afatinib. (C) 2020 Elsevier Inc. All rights reserved

    A Nationwide Study on the Impact of Routine Testing for EGFR Mutations in Advanced NSCLC Reveals Distinct Survival Patterns Based on EGFR Mutation Subclasses

    Get PDF
    SIMPLE SUMMARY: The presence of an EGFR activating mutation in tumors of non-small-cell lung cancer patients enables effective targeted therapy towards EGFR. Studies that describe a nationwide uptake of EGFR testing, the impact of the switch from single-gene EGFR to multi-gene testing, and the clinical response towards EGFR inhibitors in first-line treatment are limited. From 2013 to 2017 the percentage of patients routinely tested for EGFR mutations increased from 73% to 81% in the Netherlands. A strong shift towards EGFR testing as part of a multi-gene next generation sequencing analysis was observed. However, this did not change the percentage of EGFR mutations that were reported for this patient population, which remained stable at 12%. When treated with EGFR inhibitors that were available in a routine clinical setting prior to 2018, clear differences were observed between the type of EGFR mutation and survival. ABSTRACT: EGFR mutation analysis in non-small-cell lung cancer (NSCLC) patients is currently standard-of-care. We determined the uptake of EGFR testing, test results and survival of EGFR-mutant NSCLC patients in the Netherlands, with the overall objective to characterize the landscape of clinically actionable EGFR mutations and determine the role and clinical relevance of uncommon and composite EGFR mutations. Non-squamous NSCLC patients diagnosed in 2013, 2015 and 2017 were identified in the Netherlands Cancer Registry (NCR) and matched to the Dutch Pathology Registry (PALGA). Overall, 10,254 patients were included. Between 2013–2017, the uptake of EGFR testing gradually increased from 72.7% to 80.9% (p < 0.001). Multi-gene testing via next-generation sequencing (increased from 7.8% to 78.7% (p < 0.001), but did not affect the number of detected EGFR mutations (n = 925; 11.7%; 95% confidence interval (CI), 11.0–12.4) nor the distribution of variants. For patients treated with first-line EGFR inhibitors (n = 651), exon 19 deletions were associated with longer OS than L858R (HR 1.58; 95% CI, 1.30–1.92; p < 0.001) or uncommon, actionable variants (HR 2.13; 95% CI, 1.60–2.84; p < 0.001). Interestingly, OS for patients with L858R was similar to those with uncommon, actionable variants (HR 1.31; 95% CI, 0.98–1.75; p = 0.069). Our analysis indicates that grouping exon 19 deletions and L858R into one class of ‘common’ EGFR mutations in a clinical trial may mask the true activity of an EGFR inhibitor towards specific mutations

    Combined osimertinib, dabrafenib and trametinib treatment for advanced non-small-cell lung cancer patients with an osimertinib-induced BRAF V600E mutation

    Get PDF
    INTRODUCTION: Previous studies have reported an acquiredBRAF V600E mutation as a potential resistance mechanism to osimertinib treatment in advanced NSCLC patients with an activating mutation in EGFR. However, the therapeutic effect of combining dabrafenib and trametinib with osimertinib remains unclear. Here we report treatment efficacy in two cases with acquired BRAF V600E mutations. METHODS: Two patients with anEGFR exon 19 deletion and a T790 M mutation, both treated with osimertinib, acquired a BRAF V600E mutation at disease progression. Following the recommendation of the molecular tumor board, a concurrent combination of dabrafenib and trametinib plus osimertinib was administered. RESULTS: Because of toxicity, one patient ultimately received a reduced dose of dabrafenib and trametinib combined with a normal dose of osimertinib. Clinical response in this patient lasted for 13.4 months. Re-biopsy upon tumor progression revealed loss ofBRAF V600E and emergence of EGFR C797S. The other patient, treated with full doses of the combined therapy, had progression with metastases in lung and brain one month after starting therapy. CONCLUSION: BRAF V600E may be a resistance mechanism induced by osimertinib in EGFR-mutated advanced NSCLC. Combined treatment using dabrafenib/trametinib concurrently with osimertinib needs to be explored for osimertinib-induced BRAF V600E mutation

    Relevance and Effectiveness of Molecular Tumor Board Recommendations for Patients With Non-Small-Cell Lung Cancer With Rare or Complex Mutational Profiles

    Get PDF
    PURPOSEMolecular tumor boards (MTBs) provide physicians with a treatment recommendation for complex tumor-specific genomic alterations. National and international consensus to reach a recommendation is lacking. In this article, we analyze the effectiveness of an MTB decision-making methodology for patients with non-small-cell lung cancer (NSCLC) with rare or complex mutational profiles as implemented in the University Medical Center Groningen (UMCG).METHODSThe UMCG-MTB comprises (pulmonary) oncologists, pathologists, clinical scientists in molecular pathology, and structural biologists. Recommendations are based on reported actionability of variants and molecular interpretation of pathways affected by the variant and supported by molecular modeling. A retrospective analysis of 110 NSCLC cases (representing 106 patients) with suggested treatment of complex genomic alterations and corresponding treatment outcomes for targeted therapy was performed.RESULTSThe MTB recommended targeted therapy for 59 of 110 NSCLC cases with complex molecular profiles: 24 within a clinical trial, 15 in accordance with guidelines (on label) and 20 off label. All but 16 recommendations involved patients with an EGFR or ALK mutation. Treatment outcome was analyzed for patients with available follow-up (10 on label and 16 off label). Adherence to the MTB recommendation (21 of 26; 81%) resulted in an objective response rate of 67% (14 of 21), with a median progression-free survival of 6.3 months (interquartile range, 3.2-10.6 months) and an overall survival of 10.4 months (interquartile range, 6.3-14.6 months).CONCLUSIONTargeted therapy recommendations resulting from the UMCG-MTB workflow for complex molecular profiles were highly adhered to and resulted in a positive clinical response in the majority of patients with metastatic NSCLC

    Clinical utility of circulating tumor DNA as a response and follow-up marker in cancer therapy

    Get PDF
    Response evaluation for cancer treatment consists primarily of clinical and radiological assessments. In addition, a limited number of serum biomarkers that assess treatment response are available for a small subset of malignancies. Through recent technological innovations, new methods for measuring tumor burden and treatment response are becoming available. By utilization of highly sensitive techniques, tumor-specific mutations in circulating DNA can be detected and circulating tumor DNA (ctDNA) can be quantified. These so-called liquid biopsies provide both molecular information about the genomic composition of the tumor and opportunities to evaluate tumor response during therapy. Quantification of tumor-specific mutations in plasma correlates well with tumor burden. Moreover, with liquid biopsies, it is also possible to detect mutations causing secondary resistance during treatment. This review focuses on the clinical utility of ctDNA as a response and follow-up marker in patients with non-small cell lung cancer, melanoma, colorectal cancer, and breast cancer. Relevant studies were retrieved from a literature search using PubMed database. An overview of the available literature is provided and the relevance of ctDNA as a response marker in anti-cancer therapy for clinical practice is discussed. We conclude that the use of plasma-derived ctDNA is a promising tool for treatment decision-making based on predictive testing, detection of resistance mechanisms, and monitoring tumor response. Necessary steps for translation to daily practice and future perspectives are discussed

    A comprehensive overview of the heterogeneity of EGFR exon 20 variants in NSCLC and (pre)clinical activity to currently available treatments

    Get PDF
    Activating EGFR mutations are commonly observed in non-small cell lung cancer (NSCLC). About 4-10 % of all activating epidermal growth factor receptor (EGFR) mutations are heterogenous in-frame deletion and/or insertion mutations clustering within exon 20 (EGFRex20+). NSCLC patients with EGFRex20+ mutations are treated as a single disease entity, irrespective of the type and location of the mutation. Here, we provide a comprehensive assessment of the literature reporting both in vitro and clinical drug sensitivity across different EGFRex20+ mutations. The activating A763_Y764insFQEA mutation has a better tumor response in comparison with mutations in the near- and far regions directly following the C-helix and should therefore be treated differently. For other EGFRex20+ mutations marked differences in treatment responses have been reported indicating the need for a classification beyond the exon-based classification. A further classification can be achieved using a structure-function modeling approach and experimental data using patient-derived cell lines. The detailed overview of TKI responses for each EGFRex20+ mutation can assist treating physicians to select the most optimal drug for individual NSCLC patients.</p

    Tudásmenedzsment és a felsőoktatási intézmény, mint vállalat = Knowledge Management and the University as a Company

    Get PDF
    Purpose: ALK rearrangement detection using FISH is the standard test to identify patients with non–small cell lung carcinoma (NSCLC) eligible for treatment with ALK inhibitors. Recently, ALK protein expression in resectable NSCLC showed predictive value. We evaluated tumor response rate and survival after crizotinib treatment of patients with advanced NSCLC with ALK activation using both dichotomous immunohistochemical (IHC) staining and FISH. Experimental Design: Patients with stage IV NSCLC treated with crizotinib were selected. Tumor response was assessed. ALK rearrangements were detected by FISH (Vysis ALK-break-apart FISH-Probe KIT) and IHC [Ventana ALK (D5F3) CDx assay]. Cohorts of patients with ALK-FISH–positive advanced NSCLC from four other hospitals were used for validation. Results: Twenty-nine consecutive patients with ALK-positive advanced NSCLC diagnosed by FISH and/or IHC on small biopsies or fine-needle aspirations (FNA) were treated with ALK inhibitors. All ALK-IHC–positive patients responded to crizotinib except three with primary resistance. No tumor response was observed in 13 ALK-FISH–positive but ALK-IHC–negative patients. This was confirmed in an external cohort of 16 patients. Receiver operator characteristic (ROC) curves for ALK-IHC and ALK-FISH compared with treatment outcome showed that dichotomous ALK-IHC outperforms ALK-FISH [tumor response area under the curve: (AUC), 0.86 vs. 0.64, P ¼ 0.03; progression-free survival (PFS): AUC 0.86 vs. 0.36, P ¼ 0.005; overall survival (OS): AUC, 0.78 vs. 0.41, P ¼ 0.01, respectively]. Conclusions: Dichotomous ALK-IHC is superior to ALK-FISH on small biopsies and FNA to predict tumor response and survival to crizotinib for patients with advanced NSCLC. Our data strongly suggest adapting the guidelines and using dichotomous ALK-IHC as standard companion diagnostic test to select patients with NSCLC who benefit from ALK-targeting therapy

    An All-In-One Transcriptome-Based Assay to Identify Therapy-Guiding Genomic Aberrations in Nonsmall Cell Lung Cancer Patients

    Get PDF
    Simple Summary Treatment of patients diagnosed with advanced pulmonary adenocarcinoma depends on the presence of genomic aberrations that are targetable for a specific tyrosine kinase inhibitor. Subsequent treatment lines depend on presence of mutations that are associated with emerging resistance. These aberrations include a variety of gene activating mutations, including single nucleotide variants, small insertion-deletions, exon skipping events, and gene fusions. At this moment different assays are used to detect these aberrations in the clinic. In this paper we introduce a novel method that can detect these genomic alterations in a single, RNA-based, assay. The design of the all-in-one assay is flexible allowing addition of new targets in subsequent designs. We show that this all-in-one assay has a high accuracy even on formalin-fixed-paraffin-embedded tissue samples, making it readily applicable in a clinical diagnostic setting. The number of genomic aberrations known to be relevant in making therapeutic decisions for non-small cell lung cancer patients has increased in the past decade. Multiple molecular tests are required to reliably establish the presence of these aberrations, which is challenging because available tissue specimens are generally small. To optimize diagnostic testing, we developed a transcriptome-based next-generation sequencing (NGS) assay based on single primed enrichment technology. We interrogated 11 cell lines, two patient-derived frozen biopsies, nine pleural effusion, and 29 formalin-fixed paraffin-embedded (FFPE) samples. All clinical samples were selected based on previously identified mutations at the DNA level in EGFR, KRAS, ALK, PIK3CA, BRAF, AKT1, MET, NRAS, or ROS1 at the DNA level, or fusion genes at the chromosome level, or by aberrant protein expression of ALK, ROS1, RET, and NTRK1. A successful analysis is dependent on the number of unique reads and the RNA quality, as indicated by the DV200 value. In 27 out of 51 samples with >50 K unique reads and a DV200 >30, all 19 single nucleotide variants (SNVs)/small insertions and deletions (INDELs), three MET exon 14 skipping events, and 13 fusion gene transcripts were detected at the RNA level, giving a test accuracy of 100%. In summary, this lung-cancer-specific all-in-one transcriptome-based assay for the simultaneous detection of mutations and fusion genes is highly sensitive
    • …
    corecore