16 research outputs found

    Lack of association between stavudine exposure and lipoatrophy, dysglycaemia, hyperlactataemia and hypertriglyceridaemia: a prospective cross sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Stavudine continues to be widely used in resource poor settings despite its toxicity. Our objective was to determine association between plasma stavudine concentrations and lipoatrophy, concentrations of glucose, lactate and triglycerides.</p> <p>Methods</p> <p>Participants were enrolled in a cross-sectional study with lipoatrophy assessment, oral glucose tolerance test, fasting triglycerides, finger prick lactate, and stavudine concentrations. Individual predictions of the area under the concentration curve (AUC) were obtained using a population pharmacokinetic approach. Logistic regression models were fitted to assess the association between stavudine geometric mean ratio > 1 and impaired fasting glucose, impaired glucose tolerance, hyperlactataemia, hypertriglyceridaemia, and lipoatrophy.</p> <p>Results</p> <p>There were 47 study participants with a median age of 34 years and 83% were women. The median body mass index and waist:hip ratio was 24.5 kg/m<sup>2 </sup>and 0.85 respectively. The median duration on stavudine treatment was 14.5 months. The prevalence of lipoatrophy, impaired fasting glucose, impaired glucose tolerance, hyperlactataemia, and hypertriglyceridaemia were 34%, 19%, 4%, 32%, and 23% respectively. Estimated median (interquartile range) stavudine AUC was 2191 (1957 to 2712) ng*h/mL. Twenty two participants had stavudine geometric mean ratio >1. Univariate logistic regression analysis showed no association between stavudine geometric mean ratio >1 and impaired fasting glucose (odds ratio (OR) 2.00, 95% CI 0.44 to 9.19), impaired glucose tolerance (OR 1.14, 95% CI 0.07 to 19.42), hyperlactataemia (OR 2.19, 95%CI 0.63 to 7.66), hypertriglyceridaemia (OR 1.75, 95%CI 0.44 to 7.04), and lipoatrophy (OR 0.83, 95% CI 0.25 to 2.79).</p> <p>Conclusions</p> <p>There was a high prevalence of metabolic complications of stavudine, but these were not associated with plasma stavudine concentrations. Until there is universal access to safer antiretroviral drugs, there is a need for further studies examining the pathogenesis of stavudine-associated toxicities.</p

    Japanese subpopulation analysis of MONARCH 2: phase 3 study of abemaciclib plus fulvestrant for treatment of hormone receptor-positive, human epidermal growth factor receptor 2-negative breast cancer that progressed on endocrine therapy

    Get PDF
    BACKGROUND: This was a Japanese subpopulation analysis of MONARCH 2, a double-blind, randomized, placebo-controlled, phase 3 study of abemaciclib plus fulvestrant in patients with hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer (ABC). METHODS: Eligible women had progressed on (neo)adjuvant endocrine therapy (ET),  ≤ 12 months from end of adjuvant ET, or on first-line ET for ABC, and had not received chemotherapy for ABC. Patients were randomized 2:1 to receive abemaciclib or placebo plus fulvestrant. The primary endpoint was progression-free survival (PFS). Secondary endpoints included overall survival (OS), pharmacokinetics (PK), health-related quality of life (HRQoL), and safety. RESULTS: In Japan, 95 patients were randomized (abemaciclib, n = 64; placebo, n = 31). At final PFS analysis (February 14, 2017), median PFS was 21.2 and 14.3 months, respectively, in the abemaciclib and placebo groups (hazard ratio: 0.672; 95% confidence interval: 0.380-1.189). Abemaciclib had a higher objective response rate (37.5%) than placebo (12.9%). PK and safety profiles for Japanese patients were consistent with those of the overall population, without clinically meaningful differences across most HRQoL dimensions evaluated. The most frequent adverse events in the abemaciclib versus placebo groups were diarrhea (95.2 versus 25.8%), neutropenia (79.4 versus 0%), and leukopenia (66.7 versus 0%). At a second data cutoff (June 20, 2019), median OS was not reached with abemaciclib and 47.3 months with placebo (hazard ratio: 0.755; 95% confidence interval: 0.390-1.463). CONCLUSIONS: Results of the Japanese subpopulation were consistent with the improved clinical outcomes and manageable safety profile observed in the overall population. CLINICAL TRIAL REGISTRATION: NCT02107703; U.S. National Library of Medicine: https://clinicaltrials.gov/ct2/show/NCT02107703

    State of the climate in 2018

    Get PDF
    In 2018, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide—continued their increase. The annual global average carbon dioxide concentration at Earth’s surface was 407.4 ± 0.1 ppm, the highest in the modern instrumental record and in ice core records dating back 800 000 years. Combined, greenhouse gases and several halogenated gases contribute just over 3 W m−2 to radiative forcing and represent a nearly 43% increase since 1990. Carbon dioxide is responsible for about 65% of this radiative forcing. With a weak La Niña in early 2018 transitioning to a weak El Niño by the year’s end, the global surface (land and ocean) temperature was the fourth highest on record, with only 2015 through 2017 being warmer. Several European countries reported record high annual temperatures. There were also more high, and fewer low, temperature extremes than in nearly all of the 68-year extremes record. Madagascar recorded a record daily temperature of 40.5°C in Morondava in March, while South Korea set its record high of 41.0°C in August in Hongcheon. Nawabshah, Pakistan, recorded its highest temperature of 50.2°C, which may be a new daily world record for April. Globally, the annual lower troposphere temperature was third to seventh highest, depending on the dataset analyzed. The lower stratospheric temperature was approximately fifth lowest. The 2018 Arctic land surface temperature was 1.2°C above the 1981–2010 average, tying for third highest in the 118-year record, following 2016 and 2017. June’s Arctic snow cover extent was almost half of what it was 35 years ago. Across Greenland, however, regional summer temperatures were generally below or near average. Additionally, a satellite survey of 47 glaciers in Greenland indicated a net increase in area for the first time since records began in 1999. Increasing permafrost temperatures were reported at most observation sites in the Arctic, with the overall increase of 0.1°–0.2°C between 2017 and 2018 being comparable to the highest rate of warming ever observed in the region. On 17 March, Arctic sea ice extent marked the second smallest annual maximum in the 38-year record, larger than only 2017. The minimum extent in 2018 was reached on 19 September and again on 23 September, tying 2008 and 2010 for the sixth lowest extent on record. The 23 September date tied 1997 as the latest sea ice minimum date on record. First-year ice now dominates the ice cover, comprising 77% of the March 2018 ice pack compared to 55% during the 1980s. Because thinner, younger ice is more vulnerable to melting out in summer, this shift in sea ice age has contributed to the decreasing trend in minimum ice extent. Regionally, Bering Sea ice extent was at record lows for almost the entire 2017/18 ice season. For the Antarctic continent as a whole, 2018 was warmer than average. On the highest points of the Antarctic Plateau, the automatic weather station Relay (74°S) broke or tied six monthly temperature records throughout the year, with August breaking its record by nearly 8°C. However, cool conditions in the western Bellingshausen Sea and Amundsen Sea sector contributed to a low melt season overall for 2017/18. High SSTs contributed to low summer sea ice extent in the Ross and Weddell Seas in 2018, underpinning the second lowest Antarctic summer minimum sea ice extent on record. Despite conducive conditions for its formation, the ozone hole at its maximum extent in September was near the 2000–18 mean, likely due to an ongoing slow decline in stratospheric chlorine monoxide concentration. Across the oceans, globally averaged SST decreased slightly since the record El Niño year of 2016 but was still far above the climatological mean. On average, SST is increasing at a rate of 0.10° ± 0.01°C decade−1 since 1950. The warming appeared largest in the tropical Indian Ocean and smallest in the North Pacific. The deeper ocean continues to warm year after year. For the seventh consecutive year, global annual mean sea level became the highest in the 26-year record, rising to 81 mm above the 1993 average. As anticipated in a warming climate, the hydrological cycle over the ocean is accelerating: dry regions are becoming drier and wet regions rainier. Closer to the equator, 95 named tropical storms were observed during 2018, well above the 1981–2010 average of 82. Eleven tropical cyclones reached Saffir–Simpson scale Category 5 intensity. North Atlantic Major Hurricane Michael’s landfall intensity of 140 kt was the fourth strongest for any continental U.S. hurricane landfall in the 168-year record. Michael caused more than 30 fatalities and 25billion(U.S.dollars)indamages.InthewesternNorthPacific,SuperTyphoonMangkhutledto160fatalitiesand25 billion (U.S. dollars) in damages. In the western North Pacific, Super Typhoon Mangkhut led to 160 fatalities and 6 billion (U.S. dollars) in damages across the Philippines, Hong Kong, Macau, mainland China, Guam, and the Northern Mariana Islands. Tropical Storm Son-Tinh was responsible for 170 fatalities in Vietnam and Laos. Nearly all the islands of Micronesia experienced at least moderate impacts from various tropical cyclones. Across land, many areas around the globe received copious precipitation, notable at different time scales. Rodrigues and Réunion Island near southern Africa each reported their third wettest year on record. In Hawaii, 1262 mm precipitation at Waipā Gardens (Kauai) on 14–15 April set a new U.S. record for 24-h precipitation. In Brazil, the city of Belo Horizonte received nearly 75 mm of rain in just 20 minutes, nearly half its monthly average. Globally, fire activity during 2018 was the lowest since the start of the record in 1997, with a combined burned area of about 500 million hectares. This reinforced the long-term downward trend in fire emissions driven by changes in land use in frequently burning savannas. However, wildfires burned 3.5 million hectares across the United States, well above the 2000–10 average of 2.7 million hectares. Combined, U.S. wildfire damages for the 2017 and 2018 wildfire seasons exceeded $40 billion (U.S. dollars)

    Effects of Four Different Meal Types on the Population Pharmacokinetics of Single-Dose Rifapentine in Healthy Male Volunteers▿

    No full text
    Rifapentine and its primary metabolite, 25-desacetyl rifapentine, are active against mycobacterium tuberculosis. The objectives of this study were to describe the population pharmacokinetics of rifapentine and 25-desacetyl rifapentine in fasting and fed states. Thirty-five male healthy volunteers were enrolled in an open-label, randomized, sequential, five-way crossover study. Participants received a single 900-mg dose of rifapentine after meals with high fat (meal A), bulk and low fat (meal B), bulk and high fat (meal C), high fluid and low fat (meal D), or 200 ml of water (meal E). Venous blood samples were collected over 72 h after each rifapentine dose, and plasma was analyzed for rifapentine and 25-desacetyl rifapentine using high-performance liquid chromatography. Pharmacokinetic data were analyzed by nonlinear mixed-effect modeling using NONMEM. Compared with the fasting state, meal A had the greatest effect on rifapentine oral bioavailability, increasing it by 86%. Meals B, C, and D resulted in 33%, 46%, and 49% increases in rifapentine oral bioavailability, respectively. Similar trends were observed for 25-desacetyl rifapentine. As meal behavior has a substantial impact on rifapentine exposure, it should be considered in the evaluation of optimal dosing approaches
    corecore