23 research outputs found

    Long-Term outcome of two-stage revision surgery after hip and knee prosthetic joint infections: An observational study

    Get PDF
    Introduction: Two-stage revision surgery is the most frequently performed procedure in patients with a chronic periprosthetic joint infection (PJI). The infection eradication rates in the current literature differ between 54 % and 100 %, which could be attributed to different treatment strategies. The aim of this study was to retrospectively evaluate the infection eradication rate in patients with chronic PJI treated with two-stage revision surgery of the hip or knee in primary and re-revision cases. Methods: All patients treated with a two-stage revision for chronic PJI between 2005 and 2011 were analysed. Patient and infection characteristics were retrieved. Primary outcome was successful infection eradication at last follow-up. Successful eradication is specified as no need for subsequent revision surgery or suppressive antibiotic treatment. Results: Forty-seven patients were treated with a two-stage revision. Infection eradication was achieved in 36 out of 47 cases. Thirty-eight patients had positive cultures: 35 monomicrobial infections and 3 polymicrobial infections. Nine cases of culture-negative infections were identified. Accompanying eradication rates were 26 out of 35 cases, 2 out of 3 cases, and 8 out of 9 cases respectively. Mean follow-up was 128 (27-186) months. For hip and knee revisions the eradication rates were 22 out of 31 cases and 14 out of 16 cases respectively. After primary arthroplasty the infection was eradicated in 29 out of 38 cases and after re-revision in 7 out of 9 cases. Conclusion: In this study, the infection eradication rate for two-stage revision surgery after PJI of the hip and knee in primary and re-revision cases was 77 %. No statistically significant patient, infection and micro-organism characteristics were found which influence the infection eradication rates at long-term follow-up of 128 (27-186) months

    Evaluation of silver bio-functionality in a multicellular in vitro model: towards reduced animal usage in implant-associated infection research

    Get PDF
    Background: Despite the extensive use of silver ions or nanoparticles in research related to preventing implant-associated infections (IAI), their use in clinical practice has been debated. This is because the strong antibacterial properties of silver are counterbalanced by adverse effects on host cells. One of the reasons for this may be the lack of comprehensive in vitro models that are capable of analyzing host-bacteria and host-host interactions. Methods and results: In this study, we tested silver efficacy through multicellular in vitro models involving macrophages (immune system), mesenchymal stem cells (MSCs, bone cells), and S. aureus (pathogen). Our model showed to be capable of identifying each element of culture as well as tracking the intracellular survival of bacteria. Furthermore, the model enabled to find a therapeutic window for silver ions (AgNO3) and silver nanoparticles (AgNPs) where the viability of host cells was not compromised, and the antibacterial properties of silver were maintained. While AgNO3 between 0.00017 and 0.017 ”g/mL retained antibacterial properties, host cell viability was not affected. The multicellular model, however, demonstrated that those concentrations had no effect on the survival of S. aureus, inside or outside host cells. Similarly, treatment with 20 nm AgNPs did not influence the phagocytic and killing capacity of macrophages or prevent S. aureus from invading MSCs. Moreover, exposure to 100 nm AgNPs elicited an inflammatory response by host cells as detected by the increased production of TNF-α and IL-6. This was visible only when macrophages and MSCs were cultured together. Conclusions: Multicellular in vitro models such as the one used here that simulate complex in vivo scenarios can be used to screen other therapeutic compounds or antibacterial biomaterials without the need to use animals

    Acetabular rim extension using a personalized titanium implant for treatment of hip dysplasia in dogs: short-term results

    Get PDF
    Hip dysplasia (HD) is a common orthopedic problem in young dogs. To decrease the laxity of the hip joint related to HD, the surgical treatments are recommended to increase femoral head coverage. ACEtabular rim eXtension (ACE-X) using a personalized 3-dimensional printed titanium shelf implant is a new surgical treatment to increase femoral head coverage and decrease laxity of the dysplastic hip joint, however, the efficacy is less know. Client-owned dogs older than 6 months with clinical signs of coxofemoral joint subluxation and radiographic evidence of HD with no or mild osteoarthritis (OA) were included. The Norberg angle (NA), linear percentage of femoral head overlap (LFO), and percentage of femoral head coverage (PC) were investigated radiographically and with computed tomography (CT) before and after surgery. OA was graded (scores 0–3) according to the maximum osteophyte size measured on CT. In addition, joint laxity (Ortolani) test results, gait analysis, and the Helsinki chronic pain index (HCPI) questionnaire were obtained at preoperative, immediately postoperative and at 1.5- and 3-month evaluations. Acetabular rim extension was performed in 61 hips of 34 dogs; NA, LFO, and PC were significantly higher immediately postoperatively and at the 1.5- and 3-month follow-up examinations compared with preoperative values (p < 0.05). Osteophyte size gradually increased over time (p < 0.05). The OA score significantly increased between preoperatively and directly postoperatively, and between preoperatively and at 3-month follow-up (p < 0.05). The laxity test normalized in 59 out of 61 hips after surgery, and the HCPI questionnaire showed that the pain score decreased significantly at 1.5 and 3 months, postoperatively. The force plate showed no significant improvement during the 3 months follow-up. Although pain reduction by the implant was unclear in short-term results, a personalized shelf implant significantly increased femoral head coverage and eliminated subluxation of the dysplastic hip joint. Further studies are required to study the long-term efficacy of gait, chronic pain, and progression of osteoarthritis

    Antibacterial CATH-2 Peptide Coating to Prevent Bone Implant-Related Infection

    Get PDF
    The development of antibacterial coatings is a promising approach to preventing biofilm formation and reducing the overuse of systemic antibiotics. However, widespread antibiotic use has resulted in antibiotic-resistant bacteria, limiting the efficacy of antibiotic-based coatings. Herein, an antibacterial coating is developed by layer-by-layer (LbL) assembly of two polymers namely PDLG (poly (D,L-lactide-co-glycolide)) and gelatin methacryloyl (GelMA) while chicken cathelicidin-2 (CATH-2), a cationic and amphipathic peptide, is loaded between these polymer layers. The electrospray method is used to apply the coatings to achieve efficient peptide loading and durability. The CATH-2 bactericidal concentration ranges are first identified, followed by a study of their cytotoxicity to human mesenchymal stem cells (hMSCs) and macrophage cell lines. Later, different LbL electrospray coating assemblies loaded with the optimal peptide concentration are sought. Various coating strategies are investigated to identify an LbL coating that exhibits prolonged and biocompatible CATH-2 release. The resulting CATH-2-coated titanium surfaces exhibit strong antibacterial activity against both Staphylococcus aureus and Escherichia coli bacteria for 4 days and are biocompatible with hMSCs and macrophage cells. This coating can be considered as a versatile delivery system platform for the delivery of CATH-2 peptides while avoiding cytotoxicity, particularly for the prevention of infections associated with implants

    Evaluating the Targeting of a Staphylococcus-aureus-Infected Implant with a Radiolabeled Antibody In Vivo

    Get PDF
    Implant infections caused by Staphylococcus aureus are difficult to treat due to biofilm formation, which complicates surgical and antibiotic treatment. We introduce an alternative approach using monoclonal antibodies (mAbs) targeting S. aureus and provide evidence of the specificity and biodistribution of S.-aureus-targeting antibodies in a mouse implant infection model. The monoclonal antibody 4497-IgG1 targeting wall teichoic acid in S. aureus was labeled with indium-111 using CHX-A”-DTPA as a chelator. Single Photon Emission Computed Tomography/computed tomographyscans were performed at 24, 72 and 120 h after administration of the 111In-4497 mAb in Balb/cAnNCrl mice with a subcutaneous implant that was pre-colonized with S. aureus biofilm. The biodistribution of this labelled antibody over various organs was visualized and quantified using SPECT/CT imaging, and was compared to the uptake at the target tissue with the implanted infection. Uptake of the 111In-4497 mAbs at the infected implant gradually increased from 8.34 %ID/cm3 at 24 h to 9.22 %ID/cm3 at 120 h. Uptake at the heart/blood pool decreased over time from 11.60 to 7.58 %ID/cm3, whereas the uptake in the other organs decreased from 7.26 to less than 4.66 %ID/cm3 at 120 h. The effective half-life of 111In-4497 mAbs was determined to be 59 h. In conclusion, 111In-4497 mAbs were found to specifically detect S. aureus and its biofilm with excellent and prolonged accumulation at the site of the colonized implant. Therefore, it has the potential to serve as a drug delivery system for the diagnostic and bactericidal treatment of biofilm

    Inclination but not anatomical reconstruction is related with higher cobalt levels in MoM hip arthroplasty

    No full text
    Background:  Metal on Metal total hip arthroplasty is associated with elevated serum cobalt levels. In this study we investigate if there is a relation between the inclination angle of the cup and the anatomical reconstruction of the hip on the serum cobalt level.Methods: Postoperative cobalt serum levels were measured in 250 patients. On standardized radiographs inclination angle, lower limb length, lateral offset, center of rotation distance were evaluated. A difference of more than 5 millimeter compared to the preoperative situation was considered as a non-anatomical reconstruction.Results: For every 10 degrees increase in inclination  the cobalt level increased 14% (p=0.036).  Women with the same cup inclination angle showed 34% higher cobalt levels than men (p=0.013). No relation was found between the anatomical reconstruction and the serum cobalt levels.Conclusions: A higher inclination of the cup leads to higher serum cobalt levels, but a non-anatomical reconstruction has no influence on serum cobalt levels

    Can dual mobility cups prevent dislocation without increasing revision rates in primary total hip arthroplasty? A systematic review

    Get PDF
    International audienceBackground: Dislocation is one of the leading causes for early revision surgery after total hip arthroplasty (THA). To address this problem, the dual mobility (DM) cup was developed in the 1970s by the French. Despite the increased and, in some countries, broad use of DM cups, high quality evidence of their effectiveness compared to traditional unipolar (UP) cups is lacking. There are a few well-conducted literature reviews, but the level of evidence of the included studies was moderate to low and the rates of revision were not specifically investigated. Therefore, we did a systematic review to investigate whether there is a difference in the rate of dislocations and revisions after primary THA with a DM cup or a UP cup.Methods: We conducted a systematic literature search in PubMed, Embase and Cochrane databases in July 2019. The articles were selected based upon their quality, relevance and measurement of the predictive factor. We used the MINORS criteria to determine the methodological quality of all studies.Results: The initial search resulted in 702 citations. After application of the inclusion and exclusion criteria, eight articles met our eligibility criteria and were graded. Included studies were of medium to low methodological quality with a mean score of 14/24 (11-16) points following the MINORS criteria. In the case-control studies, a total of 549 DM cups and 649 UP cups were included. In the registry studies, a total of 5.935 DM cups and 217.362 UP cups were included. In the case-control studies, one (0.2%) dislocation was reported for the DM cups and 46 (7.1%) for the UP cup (p = 0.009, IQR = 0.00-7.00). Nine (1.6%) revisions, of which zero due to dislocation, were reported for the DM cup and 39 (6.0%), of which 30 due to dislocation, for the UP cup (p = 0.046, CI = −16.93-5.73). In the registry studies 161 (2.7%) revisions were reported for the DM cup, of which 14 (8.7%) due to dislocation. For the UP cup, 3.332 (1.5%) revisions were reported (p = 0.275, IQR = 41.00-866.25), of which 1.093 (32.8%) due to dislocation (p = 0.050, IQR = 3.50-293.25).Conclusion: This review suggests lower rates of dislocation and lower rates of revision for dislocation in favor of the DM cups. Concluding, DM cups might be an effective solution to reduce dislocation in primary THA. To evaluate the efficacy of DM cups compared to UP cups, an economic evaluation alongside a randomized controlled trial is needed focusing on patient important endpoints. Level of evidence: III, systematic review of level III studies

    Long-term outcomes of the hip shelf arthroplasty in adolescents and adults with residual hip dysplasia: a systematic review

    No full text
    Background and purpose — The shelf arthroplasty was the regular treatment for residual hip dysplasia before it was substituted by the peri-acetabular osteotomy. Yet, evidence regarding the survival of shelf arthroplasty surgery has never been systematically documented. Hence, we investigated the survival time of the shelf procedure until revision to THA in patients with primary hip dysplasia. Factors that influenced survival and complications were also examined, along with the accuracy of correcting radiographic parameters to characterize dysplasia. Material and methods — The inclusion criteria were studies of human adolescents and adults (&gt; 16 years) with primary or congenital hip dysplasia who were treated with a shelf arthroplasty procedure. Data were extracted concerning patient characteristics, survival time, complications, operative techniques, and accuracy of correcting radiographic parameters. Results — Our inclusion criteria were applicable to 9 studies. The average postoperative Center-Edge Angle and Acetabular Head Index were mostly within target range, but large variations were common. Kaplan–Meier curves (endpoint: conversion to THA) varied between 37% at 20 years’ follow-up and 72% at 35 years’ follow-up. Clinical failures were commonly associated with pain and radiographic osteoarthritis. Only minor complications were reported with incidences between 17% and 32%. Interpretation — The shelf arthroplasty is capable of restoring normal radiographic hip parameters and is not associated with major complications. When carefully selected on minimal osteoarthritic changes, hip dysplasia patients with a closed triradiate cartilage may benefit from the shelf procedure with satisfactory survival rates. The importance of the shelf arthroplasty in relation to peri-acetabular osteotomies needs to be further (re)explored.</p

    A novel treatment for anterior shoulder instability: A biomechanical comparison between a patient-specific implant and the Latarjet procedure

    No full text
    BACKGROUND: Anterior glenohumeral instability with &gt;20% glenoid bone loss is a disorder that can be treated with the Latarjet stabilizing procedure; however, complications are common. The purposes of this study were to (1) evaluate the effect of an anatomic-specific titanium implant produced by 3-dimensional (3D) printing as a treatment option for recurrent shoulder instability with substantial glenoid bone loss and (2) compare the use of that implant with the Latarjet procedure. METHODS: Ten fresh-frozen cadaveric shoulders (mean age at the time of death, 78 years) were tested in a biomechanical setup with the humerus in 30° of abduction and in neutral rotation. The shoulders were tested under 5 different conditions: (1) normal situation, (2) creation of an anterior glenoid defect, (3) implantation of an anatomic-specific titanium implant produced by 3D printing, and the Latarjet procedure (4) with and (5) without 10 N of load attached to the conjoined tendon. In each condition, the humerus was translated 10 mm anteriorly relative to the glenoid, and the maximum peak translational force that was necessary for this translation was measured. RESULTS: After creation of the glenoid defect, the mean translational peak force decreased by 30% ± 6% compared with that for the normal shoulder. After restoration of the original glenoid anatomy, the translational force needed to dislocate the humeral head from the glenoid significantly increased compared with that in the defect condition-to 119% ± 16% of normal (p &lt; 0.01) with the 3D-printed anatomic-specific implant and to 121% ± 48% of normal (p &lt; 0.01) following the Latarjet procedure. No significant differences in mean translational force were found between the anatomic-specific implant and the Latarjet procedure (p = 0.72). CONCLUSIONS: The mean translational peak force needed to dislocate the humerus 10 mm anteriorly on the glenoid was higher after glenoid restoration with the 3D-printed anatomic-specific implant compared with when the glenoid had a 20% surface defect but also compared with when the glenoid was intact. No differences in mean translational peak force were found between the 3D-printed anatomic-specific glenoid implant and the Latarjet procedure, although there was less variability in the 3D-implant condition. CLINICAL RELEVANCE: Novel 3D-printing technology could provide a reliable patient-specific alternative to solve problems related to traditional treatment methods for shoulder instability.</p
    corecore