34 research outputs found

    Acetazolamide-mediated decrease in strong ion difference accounts for the correction of metabolic alkalosis in critically ill patients

    Get PDF
    INTRODUCTION: Metabolic alkalosis is a commonly encountered acid–base derangement in the intensive care unit. Treatment with the carbonic anhydrase inhibitor acetazolamide is indicated in selected cases. According to the quantitative approach described by Stewart, correction of serum pH due to carbonic anhydrase inhibition in the proximal tubule cannot be explained by excretion of bicarbonate. Using the Stewart approach, we studied the mechanism of action of acetazolamide in critically ill patients with a metabolic alkalosis. METHODS: Fifteen consecutive intensive care unit patients with metabolic alkalosis (pH ≥ 7.48 and HCO(3)(- )≥ 28 mmol/l) were treated with a single administration of 500 mg acetazolamide intravenously. Serum levels of strong ions, creatinine, lactate, weak acids, pH and partial carbon dioxide tension were measured at 0, 12, 24, 48 and 72 hours. The main strong ions in urine and pH were measured at 0, 3, 6, 12, 24, 48 and 72 hours. Strong ion difference (SID), strong ion gap, sodium–chloride effect, and the urinary SID were calculated. Data (mean ± standard error were analyzed by comparing baseline variables and time dependent changes by one way analysis of variance for repeated measures. RESULTS: After a single administration of acetazolamide, correction of serum pH (from 7.49 ± 0.01 to 7.46 ± 0.01; P = 0.001) was maximal at 24 hours and sustained during the period of observation. The parallel decrease in partial carbon dioxide tension was not significant (from 5.7 ± 0.2 to 5.3 ± 0.2 kPa; P = 0.08) and there was no significant change in total concentration of weak acids. Serum SID decreased significantly (from 41.5 ± 1.3 to 38.0 ± 1.0 mEq/l; P = 0.03) due to an increase in serum chloride (from 105 ± 1.2 to 110 ± 1.2 mmol/l; P < 0.0001). The decrease in serum SID was explained by a significant increase in the urinary excretion of sodium without chloride during the first 24 hours (increase in urinary SID: from 48.4 ± 15.1 to 85.3 ± 7.7; P = 0.02). CONCLUSION: A single dose of acetazolamide effectively corrects metabolic alkalosis in critically ill patients by decreasing the serum SID. This effect is completely explained by the increased renal excretion ratio of sodium to chloride, resulting in an increase in serum chloride

    The influence of volume and intensive care unit organization on hospital mortality in patients admitted with severe sepsis: a retrospective multicentre cohort study

    Get PDF
    Contains fulltext : 52407.pdf ( ) (Open Access)INTRODUCTION: The aim of the study was to assess the influence of annual volume and factors related to intensive care unit (ICU) organization on in-hospital mortality among patients admitted to the ICU with severe sepsis. METHODS: A retrospective cohort study was conducted using the database of the Dutch National Intensive Care Evaluation (NICE) registry. Analyses were based on consecutive patients admitted between 1 January 2003 and 30 June 2005 who fulfilled criteria for severe sepsis within the first 24 hours of admission. A 13-item questionnaire was sent to all 32 ICUs across The Netherlands that participated in the NICE registry within this period in order to obtain information on ICU organization and staffing. The association between in-hospital mortality and factors related to ICU organization was investigated using logistic regression analysis, combined with generalized estimation equations to account for potential correlations of outcomes within ICUs. Correction for patient-related factors took place by including Simplified Acute Physiology Score II, age, sex and number of dysfunctioning organ systems in the analyses. RESULTS: Analyses based on 4,605 patients from 28 ICUs (questionnaire response rate 90.6%) revealed that a higher annual volume of severe sepsis patients is associated with a lower in-hospital mortality (P = 0.029). The presence of a medium care unit (MCU) as a step-down facility with intermediate care is associated with a higher in-hospital mortality (P = 0.013). For other items regarding ICU organization, no independent significant relationships with in-hospital mortality were found. CONCLUSION: A larger annual volume of patients with severe sepsis admitted to Dutch ICUs is associated with lower in-hospital mortality in this patient group. The presence of a MCU as a step-down facility is associated with greater in-hospital mortality. No other significant associations between in-hospital mortality and factors related to ICU organization were found

    Implementing quality indicators in intensive care units: exploring barriers to and facilitators of behaviour change

    Get PDF
    <p/> <p>Background</p> <p>Quality indicators are increasingly used in healthcare but there are various barriers hindering their routine use. To promote the use of quality indicators, an exploration of the barriers to and facilitating factors for their implementation among healthcare professionals and managers of intensive care units (ICUs) is advocated.</p> <p>Methods</p> <p>All intensivists, ICU nurses, and managers (n = 142) working at 54 Dutch ICUs who participated in training sessions to support future implementation of quality indicators completed a questionnaire on perceived barriers and facilitators. Three types of barriers related to knowledge, attitude, and behaviour were assessed using a five-point Likert scale (1 = strongly disagree to 5 = strongly agree).</p> <p>Results</p> <p>Behaviour-related barriers such as time constraints were most prominent (Mean Score, MS = 3.21), followed by barriers related to knowledge and attitude (MS = 3.62; MS = 4.12, respectively). Type of profession, age, and type of hospital were related to knowledge and behaviour. The facilitating factor perceived as most important by intensivists was administrative support (MS = 4.3; p = 0.02); for nurses, it was education (MS = 4.0; p = 0.01), and for managers, it was receiving feedback (MS = 4.5; p = 0.001).</p> <p>Conclusions</p> <p>Our results demonstrate that healthcare professionals and managers are familiar with using quality indicators to improve care, and that they have positive attitudes towards the implementation of quality indicators. Despite these facts, it is necessary to lower the barriers related to behavioural factors. In addition, as the barriers and facilitating factors differ among professions, age groups, and settings, tailored strategies are needed to implement quality indicators in daily practice.</p

    Mean glucose during ICU admission is related to mortality by a U-shaped curve in surgical and medical patients: a retrospective cohort study

    Get PDF
    Lowering of hyperglycemia in the intensive care unit (ICU) is widely practiced. We investigated in which way glucose regulation, defined as mean glucose concentration during admission, is associated with ICU mortality in a medical and a surgical cohort. Retrospective database cohort study including patients admitted between January 2004 and December 2007 in a 20-bed medical/surgical ICU in a teaching hospital. Hyperglycemia was treated using a computerized algorithm targeting for glucose levels of 4.0-7.0 mmol/l. Five thousand eight hundred twenty-eight patients were eligible for analyses, of whom 1,339 patients had a medical and 4,489 had a surgical admission diagnosis. The cohorts were subdivided in quintiles of increasing mean glucose. We examined the relation between these mean glucose strata and mortality. In both cohorts we observed the highest mortality in the lowest and highest strata. Logistic regression analysis adjusted for age, sex, Acute Physiology and Chronic Health Evaluation II (APACHE II) score, admission duration and occurrence of severe hypoglycemia showed that in the medical cohort mean glucose levels 8.4 mmol/l and in the surgical cohort mean glucose levels 9.4 mmol/l were associated with significantly increased ICU mortality (OR 2.4-3.0 and 4.9-6.2, respectively). Limitations of the study were its retrospective design and possible incomplete correction for severity of disease. Mean overall glucose during ICU admission is related to mortality by a U-shaped curve in medical and surgical patients. In this cohort of patients a 'safe range' of mean glucose regulation might be defined approximately between 7.0 and 9.0 mmol/

    Association between administered oxygen, arterial partial oxygen pressure and mortality in mechanically ventilated intensive care unit patients

    Get PDF
    Introduction The aim of this study was to investigate whether in-hospital mortality was associated with the administered fraction of oxygen in inspired air (FiO(2)) and achieved arterial partial pressure of oxygen (PaO(2)). Methods This was a retrospective, observational study on data from the first 24 h after admission from 36,307 consecutive patients admitted to 50 Dutch intensive care units (ICUs) and treated with mechanical ventilation. Oxygenation data from all admission days were analysed in a subset of 3,322 patients in 5 ICUs. Results Mean PaO(2) and FiO(2) in the first 24 h after ICU admission were 13.2 kPa (standard deviation (SD) 6.5) and 50% (SD 20%) respectively. Mean PaO(2) and FiO(2) from all admission days were 12.4 kPa (SD 5.5) and 53% (SD 18). Focusing on oxygenation in the first 24 h of admission, in-hospital mortality was shown to be linearly related to FiO(2) value and had a U-shaped relationship with PaO(2) (both lower and higher PaO(2) values were associated with a higher mortality), independent of each other and of Simplified Acute Physiology Score (SAPS) II, age, admission type, reduced Glasgow Coma Scale (GCS) score, and individual ICU. Focusing on the entire ICU stay, in-hospital mortality was independently associated with mean FiO(2) during ICU stay and with the lower two quintiles of mean PaO(2) value during ICU stay. Conclusions Actually achieved PaO(2) values in ICU patients in The Netherlands are higher than generally recommended in the literature. High FiO(2), and both low PaO(2) and high PaO(2) in the first 24 h after admission are independently associated with in-hospital mortality in ICU patients. Future research should study whether this association is causal or merely a reflection of differences in severity of illness insufficiently corrected for in the multivariate analysis

    Association between administered oxygen, arterial partial oxygen pressure and mortality in mechanically ventilated intensive care unit patients

    Get PDF
    Introduction The aim of this study was to investigate whether in-hospital mortality was associated with the administered fraction of oxygen in inspired air (FiO(2)) and achieved arterial partial pressure of oxygen (PaO(2)). Methods This was a retrospective, observational study on data from the first 24 h after admission from 36,307 consecutive patients admitted to 50 Dutch intensive care units (ICUs) and treated with mechanical ventilation. Oxygenation data from all admission days were analysed in a subset of 3,322 patients in 5 ICUs. Results Mean PaO(2) and FiO(2) in the first 24 h after ICU admission were 13.2 kPa (standard deviation (SD) 6.5) and 50% (SD 20%) respectively. Mean PaO(2) and FiO(2) from all admission days were 12.4 kPa (SD 5.5) and 53% (SD 18). Focusing on oxygenation in the first 24 h of admission, in-hospital mortality was shown to be linearly related to FiO(2) value and had a U-shaped relationship with PaO(2) (both lower and higher PaO(2) values were associated with a higher mortality), independent of each other and of Simplified Acute Physiology Score (SAPS) II, age, admission type, reduced Glasgow Coma Scale (GCS) score, and individual ICU. Focusing on the entire ICU stay, in-hospital mortality was independently associated with mean FiO(2) during ICU stay and with the lower two quintiles of mean PaO(2) value during ICU stay. Conclusions Actually achieved PaO(2) values in ICU patients in The Netherlands are higher than generally recommended in the literature. High FiO(2), and both low PaO(2) and high PaO(2) in the first 24 h after admission are independently associated with in-hospital mortality in ICU patients. Future research should study whether this association is causal or merely a reflection of differences in severity of illness insufficiently corrected for in the multivariate analysis

    Evaluating the effectiveness of a tailored multifaceted performance feedback intervention to improve the quality of care: protocol for a cluster randomized trial in intensive care

    Get PDF
    Contains fulltext : 95871.pdf (publisher's version ) (Open Access)ABSTRACT: BACKGROUND: Feedback is potentially effective in improving the quality of care. However, merely sending reports is no guarantee that performance data are used as input for systematic quality improvement (QI). Therefore, we developed a multifaceted intervention tailored to prospectively analyzed barriers to using indicators: the Information Feedback on Quality Indicators (InFoQI) program. This program aims to promote the use of performance indicator data as input for local systematic QI. We will conduct a study to assess the impact of the InFoQI program on patient outcome and organizational process measures of care, and to gain insight into barriers and success factors that affected the program's impact. The study will be executed in the context of intensive care. This paper presents the study's protocol. METHODS/DESIGN: We will conduct a cluster randomized controlled trial with intensive care units (ICUs) in the Netherlands. We will include ICUs that submit indicator data to the Dutch National Intensive Care Evaluation (NICE) quality registry and that agree to allocate at least one intensivist and one ICU nurse for implementation of the intervention. Eligible ICUs (clusters) will be randomized to receive basic NICE registry feedback (control arm) or to participate in the InFoQI program (intervention arm). The InFoQI program consists of comprehensive feedback, establishing a local, multidisciplinary QI team, and educational outreach visits. The primary outcome measures will be length of ICU stay and the proportion of shifts with a bed occupancy rate above 80%. We will also conduct a process evaluation involving ICUs in the intervention arm to investigate their actual exposure to and experiences with the InFoQI program. DISCUSSION: The results of this study will inform those involved in providing ICU care on the feasibility of a tailored multifaceted performance feedback intervention and its ability to accelerate systematic and local quality improvement. Although our study will be conducted within the domain of intensive care, we believe our conclusions will be generalizable to other settings that have a quality registry including an indicator set available. TRIAL REGISTRATION: Current Controlled Trials ISRCTN50542146
    corecore