648 research outputs found

    Physician assistants in intensive care units in the Netherlands:a narrative review with recommendations

    Get PDF
    This review is an overview of the current status of the advanced practice provider (APP) working in critical care. After describing the history of the profession, the paper focuses on the literature available. Although a lot of literature is available, the papers are often heterogeneous and comparison with other clinicians remains difficult. The paper zooms in on the situation in the Netherlands and describes the training courses for the physician assistant (PA), the equivalent of the APP, together with the legislation in place. Furthermore, the review elaborates on the potential superimposed value of the PA for the ICU. Because of the limited amount of studies performed in the Dutch situation this review finishes with the conclusions of 15-year-experience and the possible issues which could arise when implementing a PA on the ICU

    3-Dimensional Imaging of Biological Structures by High Resolution Confocal Scanning Laser Microscopy

    Get PDF
    Imaging in confocal microscopy is characterized by the ability to make a selective image of just one plane inside a specimen, virtually unaffected -within certain limits-by the out-of-focus regions above and below it. This property, called optical sectioning, is accompanied by improved imaging transverse to the optical axis. We have coupled a confocal microscope to a computer system, making the combination of both an excellent instrument for mapping the 3-dimensional structure of extended specimens into a computer memory/data array. We measured that the volume element contributing to each data point has, under typical fluorescence conditions, a size of 0.2 x 0.2 x 0.72 μm. The data can be analysed and represented in various ways, i.e., stereoscopical views from any desired angle. After a description of the experimental arrangement, we show various examples of biological and food-structural studies. The microscope can be operated either in reflection or in fluorescence. In the latter mode a spectral element allows selection of the wavelength band of fluorescence light contributing to the image. In this way, we can distinguish various structures inside the cell and study their 3-dimensional relationships. Various applications in biology and the study of food structure are presented

    Dissecting bombs and bursts: non-LTE inversions of low-atmosphere reconnection in SST and IRIS observations

    Full text link
    Ellerman bombs and UV bursts are transient brightenings that are ubiquitously observed in the lower atmospheres of active and emerging flux regions. Here we present inversion results of SST/CRISP and CHROMIS, as well as IRIS data of such transient events. Combining information from the Mg II h & k, Si IV and Ca II 8542A and Ca II H & K lines, we aim to characterise their temperature and velocity stratification, as well as their magnetic field configuration. We find average temperature enhancements of a few thousand kelvin close to the classical temperature minimum, but localised peak temperatures of up to 10,000-15,000 K from Ca II inversions. Including Mg II generally dampens these temperature enhancements to below 8000 K, while Si IV requires temperatures in excess of 10,000 K at low heights, but may also be reproduced with secondary temperature enhancements of 35,000-60,000 K higher up. However, reproducing Si IV comes at the expense of overestimating the Mg II emission. The line-of-sight velocity maps show clear bi-directional jet signatures and strong correlation with substructure in the intensity images, with slightly larger velocities towards the observer than away. The magnetic field parameters show an enhancement of the horizontal field co-located with the brightenings at similar heights as the temperature increase. We are thus able to largely reproduce the observational properties of Ellerman bombs with UV burst signature with temperature stratifications peaking close to the classical temperature minimum. Correctly modelling the Si IV emission in agreement with all other diagnostics is, however, an outstanding issue. Accounting for resolution differences, fitting localised temperature enhancements and/or performing spatially-coupled inversions is likely necessary to obtain better agreement between all considered diagnostics.Comment: Accepted for publication in Astronomy & Astrophysics. 24 pages, 17 figure

    GpaXItarl originating from Solanum tarijense is a major resistance locus to Globodera pallida and is localised on chromosome 11 of potato

    Get PDF
    Resistance to Globodera pallida Rookmaker (Pa3), originating from wild species Solanum tarijense was identified by QTL analysis and can be largely ascribed to one major QTL. GpaXItarl explained 81.3% of the phenotypic variance in the disease test. GpaXItarl is mapped to the long arm of chromosome 11. Another minor QTL explained 5.3% of the phenotypic variance and mapped to the long arm of chromosome 9. Clones containing both QTL showed no lower cyst counts than clones with only GpaXItarl. After Mendelising the phenotypic data, GpaXItarl could be more precisely mapped near markers GP163 and FEN427, thus anchoring GpaXItarl to a region with a known R-gene cluster containing virus and nematode resistance genes

    Visualization and Analysis Techniques for Three Dimensional Information Acquired by Confocal Microscopy

    Get PDF
    Confocal Scanning Laser Microscopy (CSLM) is particularly well suited for the acquisition of 3-dimensional data of microscopic objects. In the CSLM a specific volume in the object is sampled during the imaging process and the result is stored in a digital computer as a three-dimensional memory array. Optimal use of these data requires both the development of effective visual representations as well as analysis methods. In addition to the well known stereoscopic representation method a number of alternatives for various purposes are presented. When rendering in terms of solid-looking or semitransparent objects is required, an algorithm based on a simulated process of excitation and fluorescence is very suitable. Graphic techniques can be used to examine the 3-dimensional shape of surfaces. For (near-)real time applications a representation method should not require extensive previous data-processing or analysis. From the very extensive field of 3-D image analysis two examples are given
    corecore