638 research outputs found

    Discovery of Inhibitors by Combinatorial-Chemistry Approaches

    Get PDF
    This thesis describes our efforts to develop inhibitors using combinatorial-chemistry approaches. These approaches can potentially speed-up the drug discovery trajectory and the discovered molecules could be used as starting points for future drug development projects targeting 15-LOX-1, MIF and/or MDM2. The aforementioned targets are all proteins that play an important role in common diseases

    Mesoscopic anisotropic magnetoconductance fluctuations in ferromagnets

    Full text link
    The conductance of a ferromagnetic particle depends on the relative orientation of the magnetization with respect to the direction of current flow. This phenomenon is known as "anisotropic magnetoresistance". Quantum interference leads to an additional, random dependence of the conductance on the magnetization direction. These "anisotropic magnetoresistance fluctuations" are caused by spin-orbit scattering, which couples the electron motion to the exchange field in the ferromagnet. We report a calculation of the dependence of the conductance autocorrelation function on the rotation angle of the magnetization direction.Comment: 4 pages, 3 figures, revtex

    Tyrosine hydroxylase phosphorylation is under the control of serine 40

    Get PDF
    Tyrosine hydroxylase catalyzes the initial and rate-limiting step in the biosynthesis of the neurotransmitter dopamine. The phosphorylation state of Ser40 and Ser31 is believed to exert a direct effect on the enzymatic activity of tyrosine hydroxylase. Interestingly, some studies report that Ser31 phosphorylation affects Ser40 phosphorylation, while Ser40 phosphorylation has no effect on Ser31 phosphorylation, a process named hierarchical phosphorylation. Here, we provide a detailed investigation into the signal transduction mechanisms regulating Ser40 and Ser31 phosphorylation in dopaminergic mouse MN9D and Neuro2A cells. We find that cyclic nucleotide signaling drives Ser40 phosphorylation, and that Ser31 phosphorylation is strongly regulated by ERK signaling. Inhibition of ERK1/2 with UO126 or PD98059 reduced Ser31 phosphorylation, but surprisingly had no effect on Ser40 phosphorylation, contradicting a role for Ser31 in the regulation of Ser40. Moreover, to elucidate a possible hierarchical mechanism controlling tyrosine hydroxylase phosphorylation, we introduced tyrosine hydroxylase variants in Neuro2A mouse neuroblastoma cells that mimic either phosphorylated or unphosphorylated serine residues. When we introduced a Ser40Ala tyrosine hydroxylase variant, Ser31 phosphorylation was completely absent. Additionally, neither the tyrosine hydroxylase variant Ser31Asp, nor the variant Ser31Ala had any significant effect on basal Ser40 phosphorylation levels. These results suggest that tyrosine hydroxylase is not controlled by hierarchical phosphorylation in the sense that first Ser31 has to be phosphorylated and subsequently Ser40, but, conversely, that Ser40 phosphorylation is essential for Ser31 phosphorylation. Overall our study suggests that Ser40 is the crucial residue to target so as to modulate tyrosine hydroxylase activity

    The contribution of Parkin, PINK1 and DJ-1 genes to selective neuronal degeneration in Parkinson's disease

    Get PDF
    Parkinson's disease (PD) is characterised by selective and severe degeneration of the substantia nigra pars compacta and the locus coeruleus (LC), which underlies the most prominent symptoms. Although α-synuclein accumulation has long been established to play a causal role in the disease, it alone cannot explain the selective degenerative pattern. Recent evidence shows that the selective vulnerability could arise due to the large presence of cytosolic catecholamines and Ca2+ ions in the substantia nigra pars compacta and LC specifically that can be aberrantly affected by α-synuclein accumulation. Moreover, each has its own toxic potential, and disturbance of one can exacerbate the toxic effects of the others. This presents a mechanism unique to these areas that can lead to a vicious degenerative cycle. Interestingly, in familial variants of PD, the exact same brain areas are affected, implying the underlying process is likely the same. However, the exact disease mechanisms of many of these genetic variants remain unclear. Here, we review the effects of the PD-related genes Parkin, PINK1 and DJ-1. We establish that these mutant varieties can set in motion the same degenerative process involving α-synuclein, cytosolic catecholamines and Ca2+ . Additionally, we show indications that model organisms might not accurately represent all components of this central mechanism, explaining why Parkin, PINK1 and DJ-1 model organisms often lack a convincing PD-like phenotype

    Digital Sociology: An Introduction

    Get PDF
    This document provides an introduction to digital sociology. It includes discussion on using digital and social media for sociological research and for academic professional practice

    Vast TVB parameter space exploration: A Modular Framework for Accelerating the Multi-Scale Simulation of Human Brain Dynamics

    Full text link
    Global neural dynamics emerge from multi-scale brain structures, with neurons communicating through synapses to form transiently communicating networks. Network activity arises from intercellular communication that depends on the structure of connectome tracts and local connection, intracellular signalling cascades, and the extracellular molecular milieu that regulate cellular properties. Multi-scale models of brain function have begun to directly link the emergence of global brain dynamics in conscious and unconscious brain states to microscopic changes at the level of cells. In particular, AdEx mean-field models representing statistical properties of local populations of neurons have been connected following human tractography data to represent multi-scale neural phenomena in simulations using The Virtual Brain (TVB). While mean-field models can be run on personal computers for short simulations, or in parallel on high-performance computing (HPC) architectures for longer simulations and parameter scans, the computational burden remains high and vast areas of the parameter space remain unexplored. In this work, we report that our TVB-HPC framework, a modular set of methods used here to implement the TVB-AdEx model for GPU and analyze emergent dynamics, notably accelerates simulations and substantially reduces computational resource requirements. The framework preserves the stability and robustness of the TVB-AdEx model, thus facilitating finer resolution exploration of vast parameter spaces as well as longer simulations previously near impossible to perform. Given that simulation and analysis toolkits are made public as open-source packages, our framework serves as a template onto which other models can be easily scripted and personalized datasets can be used for studies of inter-individual variability of parameters related to functional brain dynamics.Comment: 21 pages, 9 figure

    Sperm-derived histones contribute to zygotic chromatin in humans

    Get PDF
    Contains fulltext : 70968.pdf ( ) (Open Access)BACKGROUND: about 15% to 30% of the DNA in human sperm is packed in nucleosomes and transmission of this fraction to the embryo potentially serves as a mechanism to facilitate paternal epigenetic programs during embryonic development. However, hitherto it has not been established whether these nucleosomes are removed like the protamines or indeed contribute to paternal zygotic chromatin, thereby potentially contributing to the epigenome of the embryo. RESULTS: to clarify the fate of sperm-derived nucleosomes we have used the deposition characteristics of histone H3 variants from which follows that H3 replication variants present in zygotic paternal chromatin prior to S-phase originate from sperm. We have performed heterologous ICSI by injecting human sperm into mouse oocytes. Probing these zygotes with an antibody highly specific for the H3.1/H3.2 replication variants showed a clear signal in the decondensed human sperm chromatin prior to S-phase. In addition, staining of human multipronuclear zygotes also showed the H3.1/H3.2 replication variants in paternal chromatin prior to DNA replication. CONCLUSION: these findings reveal that sperm-derived nucleosomal chromatin contributes to paternal zygotic chromatin, potentially serving as a template for replication, when epigenetic information can be copied. Hence, the execution of epigenetic programs originating from transmitted paternal chromatin during subsequent embryonic development is a logical consequence of this observation

    The role of dendritic cells in the pathogenesis of systemic lupus erythematosus

    Get PDF
    The etiology of the autoimmune disease systemic lupus erythematosus is not known, but aberrant apoptosis and/or insufficient clearance of apoptotic material have been assigned a pivotal role. During apoptosis, nucleosomes and several endogenous danger-associated molecular patterns are incorporated in blebs. Recent data indicate that apoptotic blebs induce maturation of myeloid dendritic cells, resulting in IL-17 production by T cells. In this review we summarize current knowledge on the role of dendritic cells in the pathogenesis of systemic lupus erythematosus with special emphasis on the uptake of apoptotic blebs by dendritic cells, and the subsequent induction of Th17 cells

    Ligation of α-Dystroglycan on Podocytes Induces Intracellular Signaling: A New Mechanism for Podocyte Effacement?

    Get PDF
    Contains fulltext : 79974.pdf (publisher's version ) (Open Access)BACKGROUND: Alpha-dystroglycan is a negatively charged glycoprotein that covers the apical and basolateral membrane of the podocyte. Its transmembrane binding to the cytoskeleton is regulated via tyrosine phosphorylation (pY892) of beta-dystroglycan. At the basolateral side alpha-dystroglycan binds the glomerular basement membrane. At the apical membrane, it plays a role in the maintenance of the filtration slit. In this study, we evaluated whether ligation of alpha-dystroglycan with specific antibodies or natural ligands induces intracellular signaling, and whether there is an effect on podocyte architecture. METHODOLOGY/PRINCIPAL FINDINGS: Conditionally immortalized podocytes were exposed in vitro to antibodies to alpha-dystroglycan, and to fibronectin, biglycan, laminin and agrin. Intracellular calcium fluxes, phosphorylation of beta-dystroglycan and podocyte architecture were studied. Antibodies to alpha-dystroglycan could specifically induce calcium signaling. Fibronectin also induced calcium signaling, and led to dephosphorylation of pY892 in beta-dystroglycan. Ligation of alpha-dystroglycan resulted in an altered actin architecture, a decreased number of podocyte pedicles and a more flattened appearance of the podocyte. CONCLUSIONS/SIGNIFICANCE: We conclude that ligation of alpha-dystroglycan on podocytes induces intracellular calcium signaling, which leads to an altered cytoskeleton architecture akin to the situation of foot process effacement. In particular the ability of fibronectin to induce intracellular signaling events is of interest, since the expression and excretion of this protein is upregulated in several proteinuric diseases. Therefore, fibronectin-induced signaling via dystroglycan may be a novel mechanism for foot process effacement in proteinuric diseases
    • …
    corecore