15 research outputs found

    The KMT2A recombinome of acute leukemias in 2023

    Get PDF
    Chromosomal rearrangements of the human KMT2A/MLL gene are associated with de novo as well as therapy-induced infant, pediatric, and adult acute leukemias. Here, we present the data obtained from 3401 acute leukemia patients that have been analyzed between 2003 and 2022. Genomic breakpoints within the KMT2A gene and the involved translocation partner genes (TPGs) and KMT2A-partial tandem duplications (PTDs) were determined. Including the published data from the literature, a total of 107 in-frame KMT2A gene fusions have been identified so far. Further 16 rearrangements were out-of-frame fusions, 18 patients had no partner gene fused to 5’-KMT2A, two patients had a 5’-KMT2A deletion, and one ETV6::RUNX1 patient had an KMT2A insertion at the breakpoint. The seven most frequent TPGs and PTDs account for more than 90% of all recombinations of the KMT2A, 37 occur recurrently and 63 were identified so far only once. This study provides a comprehensive analysis of the KMT2A recombinome in acute leukemia patients. Besides the scientific gain of information, genomic breakpoint sequences of these patients were used to monitor minimal residual disease (MRD). Thus, this work may be directly translated from the bench to the bedside of patients and meet the clinical needs to improve patient survival.publishedVersionPeer reviewe

    CD13/aminopeptidase N involvement in dendritic cell maturation [5]

    No full text

    Optimizing the Timing of Highest Hydrocortisone Dose in Children and Adolescents With 21-Hydroxylase Deficiency

    No full text
    Context Hydrocortisone treatment of young patients with 21-hydroxylase deficiency (21OHD) is given thrice daily, but there is debate about the optimal timing of the highest hydrocortisone dose, either mimicking the physiological diurnal rhythm (morning), or optimally suppressing androgen activity (evening). Objective We aimed to compare 2 standard hydrocortisone timing strategies, either highest dosage in the morning or evening, with respect to hormonal status throughout the day, nocturnal blood pressure (BP), and sleep and activity scores. Methods This 6-week crossover study included 39 patients (aged 4-19 years) with 21OHD. Patients were treated for 3 weeks with the highest hydrocortisone dose in the morning, followed by 3 weeks with the highest dose in the evening (n = 21), or vice versa (n = 18). Androstenedione (A4) and 17-hydroxyprogesterone (17OHP) levels were quantified in saliva collected at 5 am; 7 am; 3 pm; and 11 pm during the last 2 days of each treatment period. The main outcome measure was comparison of saliva 17OHP and A4 levels between the 2 treatment strategies. Results Administration of the highest dose in the evening resulted in significantly lower 17OHP levels at 5 am, whereas the highest dose in the morning resulted in significantly lower 17OHP and A4 levels in the afternoon. The 2 treatment dose regimens were comparable with respect to averaged daily hormone levels, nocturnal BP, and activity and sleep scores. Conclusion No clear benefit for either treatment schedule was established. Given the variation in individual responses, we recommend individually optimizing dose distribution and monitoring disease control at multiple time points

    Optimizing the Timing of Highest Hydrocortisone Dose in Children and Adolescents With 21-Hydroxylase Deficiency

    No full text
    Context Hydrocortisone treatment of young patients with 21-hydroxylase deficiency (21OHD) is given thrice daily, but there is debate about the optimal timing of the highest hydrocortisone dose, either mimicking the physiological diurnal rhythm (morning), or optimally suppressing androgen activity (evening). Objective We aimed to compare 2 standard hydrocortisone timing strategies, either highest dosage in the morning or evening, with respect to hormonal status throughout the day, nocturnal blood pressure (BP), and sleep and activity scores. Methods This 6-week crossover study included 39 patients (aged 4-19 years) with 21OHD. Patients were treated for 3 weeks with the highest hydrocortisone dose in the morning, followed by 3 weeks with the highest dose in the evening (n = 21), or vice versa (n = 18). Androstenedione (A4) and 17-hydroxyprogesterone (17OHP) levels were quantified in saliva collected at 5 am; 7 am; 3 pm; and 11 pm during the last 2 days of each treatment period. The main outcome measure was comparison of saliva 17OHP and A4 levels between the 2 treatment strategies. Results Administration of the highest dose in the evening resulted in significantly lower 17OHP levels at 5 am, whereas the highest dose in the morning resulted in significantly lower 17OHP and A4 levels in the afternoon. The 2 treatment dose regimens were comparable with respect to averaged daily hormone levels, nocturnal BP, and activity and sleep scores. Conclusion No clear benefit for either treatment schedule was established. Given the variation in individual responses, we recommend individually optimizing dose distribution and monitoring disease control at multiple time points

    Real-time quantitative polymerase chain reaction detection of minimal residual disease by standardized WT1 assay to enhance risk stratification in acute myeloid leukemia: a European LeukemiaNet study.

    No full text
    Item does not contain fulltextPURPOSE: Risk stratification in acute myeloid leukemia (AML) is currently based on pretreatment characteristics. It remains to be established whether relapse risk can be better predicted through assessment of minimal residual disease (MRD). One proposed marker is the Wilms tumor gene WT1, which is overexpressed in most patients with AML, thus providing a putative target for immunotherapy, although in the absence of a standardized assay, its utility for MRD monitoring remains controversial. PATIENTS AND METHODS: Nine published and in-house real-time quantitative polymerase chain reaction WT1 assays were systematically evaluated within the European LeukemiaNet; the best-performing assay was applied to diagnostic AML samples (n = 620), follow-up samples from 129 patients treated with intensive combination chemotherapy, and 204 normal peripheral blood (PB) and bone marrow (BM) controls. RESULTS: Considering relative levels of expression detected in normal PB and BM, WT1 was sufficiently overexpressed to discriminate > or = 2-log reduction in transcripts in 46% and 13% of AML patients, according to the respective follow-up sample source. In this informative group, greater WT1 transcript reduction after induction predicted reduced relapse risk (hazard ratio, 0.54 per log reduction; 95% CI, 0.36 to 0.83; P = .004) that remained significant when adjusted for age, WBC count, and cytogenetics. Failure to reduce WT1 transcripts below the threshold limits defined in normal controls by the end of consolidation also predicted increased relapse risk (P = .004). CONCLUSION: Application of a standardized WT1 assay provides independent prognostic information in AML, lending support to incorporation of early assessment of MRD to develop more robust risk scores, to enhance risk stratification, and to identify patients who may benefit from allogeneic transplantation

    Minimal residual disease and outcome characteristics in infant KMT2A-germline acute lymphoblastic leukaemia treated on the Interfant-06 protocol

    Get PDF
    Background: The outcome of infants with KMT2A-germline acute lymphoblastic leukaemia (ALL) is superior to that of infants with KMT2A-rearranged ALL but has been inferior to non-infant ALL patients. Here, we describe the outcome and prognostic factors for 167 infants with KMT2A-germline ALL enrolled in the Interfant-06 study. Methods: Univariate analysis on prognostic factors (age, white blood cell count at diagnosis, prednisolone response and CD10 expression) was performed on KMT2A-germline infants in complete remission at the end of induction (EOI; n = 163). Bone marrow minimal residual disease (MRD) was measured in 73 patients by real-time quantitative polymerase chain reaction at various time points (EOI, n = 68; end of consolidation, n = 56; and before OCTADAD, n = 57). MRD results were classified as negative, intermediate (6 months of age (P = 0.04). Patients with high EOI MRD ≥5 × 10−4 had a worse outcome (6-year DFS 61.4% [SE = 12.4], n = 16), compared with patients with undetectable EOI MRD (6-year DFS 87.9% [SE = 6.6], n = 28) or intermediate EOI MRD <5 × 10−4 (6-year DFS 76.4% [SE = 11.3], n = 24; P = 0.02). Conclusion: We conclude that young age at diagnosis and low EOI MRD seem favourable prognostic factors in infants with KMT2A-germline ALL and should be considered for risk stratification in future clinical trials

    Minimal residual disease, long-term outcome, and IKZF1 deletions in children and adolescents with Down syndrome and acute lymphocytic leukaemia: a matched cohort study

    No full text
    Background: Patients with Down syndrome and acute lymphocytic leukaemia are at an increased risk of treatment-related mortality and relapse, which is influenced by unfavourable genetic aberrations (eg, IKZF1 deletion). We aimed to investigate the potential underlying effect of Down syndrome versus the effects of adverse cancer genetics on clinical outcome. Method: Patients (aged 1–23 years) with Down syndrome and acute lymphocytic leukaemia and matched non-Down syndrome patients with acute lymphocytic leukaemia (matched controls) from eight trials (DCOG ALL10 and ALL11, ANZCHOG ALL8, AIEOP-BFM ALL2009, UKALL2003, NOPHO ALL2008, CoALL 07-03, and CoALL 08-09) done between 2002 and 2018 across various countries (the Netherlands, the UK, Australia, Denmark, Finland, Iceland, Norway, Sweden, and Germany) were included. Participants were matched (1:3) for clinical risk factors and genetics, including IKZF1 deletion. The primary endpoint was the comparison of MRD levels (absolute MRD levels were categorised into two groups, low [<0·0001] and high [≥0·0001]) between patients with Down syndrome and acute lymphocytic leukaemia and matched controls, and the secondary outcomes were comparison of long-term outcomes (event-free survival, overall survival, relapse, and treatment-related mortality [TRM]) between patients with Down syndrome and acute lymphocytic leukaemia and matched controls. Two matched cohorts were formed: for MRD analyses and for long-term outcome analyses. For both cohorts, matching was based on induction regimen; for the long-term outcome cohort, matching also included MRD-guided treatment group. We used mixed-effect models, Cox models, and competing risk for statistical analyses. Findings: Of 251 children and adolescents with Down syndrome and acute lymphocytic leukaemia, 136 were eligible for analyses and matched to 407 (of 8426) non-Down syndrome patients with acute lymphocytic leukaemia (matched controls). 113 patients with Down syndrome and acute lymphocytic leukaemia were excluded from matching in accordance with predefined rules, no match was available for two patients with Down syndrome and acute lymphocytic leukaemia. The proportion of patients with high MRD at the end of induction treatment was similar for patients with Down syndrome and acute lymphocytic leukaemia (52 [38%] of 136) and matched controls (157 [39%] of 403; OR 0·97 [95% CI 0·64–1·46]; p=0·88). Patients with Down syndrome and acute lymphocytic leukaemia had a higher relapse risk than did matched controls in the IKZF1 deleted group (relapse at 5 years 37·1% [17·1–57·2] vs 13·2% [6·1–23·1]; cause-specific hazard ratio [HRcs] 4·3 [1·6–11·0]; p=0·0028), but not in the IKZF1 wild-type group (relapse at 5 years 5·8% [2·1–12·2] vs 8·1% [5·1–12·0]; HRcs 1·0 [0·5–2·1]; p=0·99). In addition to increased induction deaths (15 [6%] of 251 vs 69 [0·8%] of 8426), Down syndrome and acute lymphocytic leukaemia was associated with a higher risk of post-induction TRM compared with matched controls (TRM at 5 years 12·2% [7·0–18·9] vs 2·7% [1·3–4·9]; HRcs 5·0 [2·3–10·8]; p<0·0001). Interpretation: Induction treatment is equivalently effective for patients with Down syndrome and acute lymphocytic leukaemia and for matched patients without Down syndrome. Down syndrome itself provides an additional risk in individuals with IKZF1 deletions, suggesting an interplay between the germline environment and this poor risk somatic aberration. Different treatment strategies are warranted considering both inherent risk of relapse and high risk of TRM. Funding: Stichting Kinder Oncologisch Centrum Rotterdam and the Princess Máxima Center Foundation, NHMRC Australia, The Cancer Council NSW, Tour de Cure, Blood Cancer UK, UK Medical Research Council, Children with Cancer, Swedish Society for Pediatric Cancer, Swedish Childhood Cancer Fund, Danish Cancer Society and the Danish Childhood Cancer Foundation
    corecore