2,468 research outputs found

    Integration of data from remote monitoring systems and programmers into the hospital electronic health record system based on international standards

    Get PDF
    Remote follow-up of implanted ICDs may offer a solution to the problem of overcrowded outpatient clinics. All major device companies have developed a remote follow-up solution. Data obtained from the remote follow-up systems are stored in a central database system, operated and owned by the device company and accessible for the physician or technician. However, the problem now arises that part of the patient’s clinical information is stored in the local electronic health record (EHR) system in the hospital, while another part is only available in the remote monitoring database. This may potentially result in patient safety issues. Ideally all information should become available in the EHR system. IHE (Integrating the Healthcare Enterprise) is an initiative to improve the way computer systems in healthcare share information. To address the requirement of integrating remote monitoring data in the local EHR, the IHE Implantable Device Cardiac Observation (IDCO) profile has been developed. In our hospital, we have implemented the IHE IDCO profile to import data from the remote databases from two device vendors into the departmental Cardiology Information System. Data are exchanged via an HL7/XML communication protocol, as defined in the IHE IDCO profile

    Prognosis and institutionalization of frail community-dwelling older patients following a proximal femoral fracture:a multicenter retrospective cohort study

    Get PDF
    SUMMARY: Hip fractures are a serious public health issue with major consequences, especially for frail community dwellers. This study found a poor prognosis at 6 months post-trauma with regard to life expectancy and rehabilitation to pre-fracture independency levels. It should be realized that recovery to pre-trauma functioning is not a certainty for frail community-dwelling patients. INTRODUCTION: Proximal femoral fractures are a serious public health issue in the older patient. Although a significant rise in frail community-dwelling elderly is expected because of progressive aging, a clear overview of the outcomes in these patients sustaining a proximal femoral fracture is lacking. This study assessed the prognosis of frail community-dwelling patients who sustained a proximal femoral fracture. METHODS: A multicenter retrospective cohort study was performed on frail community-dwelling patients with a proximal femoral fracture who aged over 70 years. Patients were considered frail if they were classified as American Society of Anesthesiologists score ≥ 4 and/or a BMI < 18.5 kg/m(2) and/or Functional Ambulation Category ≤ 2 pre-trauma. The primary outcome was 6-month mortality. Secondary outcomes were adverse events, health care consumption, rate of institutionalization, and functional recovery. RESULTS: A total of 140 out of 2045 patients matched the inclusion criteria with a median age of 85 (P(25)–P(75) 80–89) years. The 6-month mortality was 58 out of 140 patients (41%). A total of 102 (73%) patients experienced adverse events. At 6 months post-trauma, 29 out of 120 (24%) were readmitted to the hospital. Out of the 82 surviving patients after 6 months, 41 (50%) were unable the return to their home, and only 32 (39%) were able to achieve outdoor ambulation. CONCLUSION: Frail community-dwelling older patients with a proximal femoral fracture have a high risk of death, adverse events, and institutionalization and often do not reobtain their pre-trauma level of independence. Foremost, the results can be used for realistic expectation management

    Global 3-D Simulations of the Triple Oxygen Isotope Signature Δ17O in Atmospheric CO2

    Get PDF
    The triple oxygen isotope signature Δ¹⁷O in atmospheric CO₂, also known as its “¹⁷O excess,” has been proposed as a tracer for gross primary production (the gross uptake of CO₂ by vegetation through photosynthesis). We present the first global 3-D model simulations for Δ¹⁷O in atmospheric CO₂ together with a detailed model description and sensitivity analyses. In our 3-D model framework we include the stratospheric source of Δ¹⁷O in CO₂ and the surface sinks from vegetation, soils, ocean, biomass burning, and fossil fuel combustion. The effect of oxidation of atmospheric CO on Δ¹⁷O in CO2 is also included in our model. We estimate that the global mean Δ¹⁷O (defined as Δ¹⁷O = ln( ¹⁷O + 1) − RL · ln( ¹⁸O + 1) with RL = 0.5229) of CO₂ in the lowest 500 m of the atmosphere is 39.6 per meg, which is ∼20 per meg lower than estimates from existing box models. We compare our model results with a measured stratospheric Δ¹⁷O in CO₂ profile from Sodankylä (Finland), which shows good agreement. In addition, we compare our model results with tropospheric measurements of Δ¹⁷O in CO₂ from Göttingen (Germany) and Taipei (Taiwan), which shows some agreement but we also find substantial discrepancies that are subsequently discussed. Finally, we show model results for Zotino (Russia), Mauna Loa (United States), Manaus (Brazil), and South Pole, which we propose as possible locations for future measurements of Δ¹⁷O in tropospheric CO₂ that can help to further increase our understanding of the global budget of Δ¹⁷O in atmospheric CO₂

    Changes and prognostic value of cardiopulmonary exercise testing parameters in elderly patients undergoing cardiac rehabilitation: The EU-CaRE observational study

    Get PDF
    Objective We aimed 1) to test the applicability of the previously suggested prognostic value of CPET to elderly cardiac rehabilitation patients and 2) to explore the underlying mechanism of the greater improvement in exercise capacity (peak oxygen consumption, VO2) after CR in surgical compared to non-surgical cardiac patients. Methods Elderly patients (?65 years) commencing CR after coronary artery bypass grafting, surgical valve replacement (surgery-group), percutaneous coronary intervention, percutaneous valve replacement or without revascularisation (non-surgery group) were included in the prospective multi-center EU-CaRE study. CPETs were performed at start of CR, end of CR and 1-year-follow-up. Logistic models and receiver operating characteristics were used to determine prognostic values of CPET parameters for major adverse cardiac events (MACE). Linear models were performed for change in peak VO2 (start to follow-up) and parameters accounting for the difference between surgery and non-surgery patients were sought. Results 1421 out of 1633 EU-CaRE patients performed a valid CPET at start of CR (age 73±5.4, 81% male). No CPET parameter further improved the receiver operation characteristics significantly beyond the model with only clinical parameters. The higher improvement in peak VO2 (25% vs. 7%) in the surgical group disappeared when adjusted for changes in peak tidal volume and haemoglobin. Conclusion CPET did not improve the prediction of MACE in elderly CR patients. The higher improvement of exercise capacity in surgery patients was mainly driven by restoration of haemoglobin levels and improvement in respiratory function after sternotomy

    Synchronisation of egg hatching of brown hairstreak (Thecla betulae) and budburst of blackthorn (Prunus spinosa) in a warmer future

    Get PDF
    Synchronisation of the phenology of insect herbivores and their larval food plant is essential for the herbivores’ fitness. The monophagous brown hairstreak (Thecla betulae) lays its eggs during summer, hibernates as an egg, and hatches in April or May in the Netherlands. Its main larval food plant blackthorn (Prunus spinosa) flowers in early spring, just before the leaves appear. As soon as the Blackthorn opens its buds, and this varies with spring temperatures, food becomes available for the brown hairstreak. However, the suitability of the leaves as food for the young caterpillars is expected to decrease rapidly. Therefore, the timing of egg hatch is an important factor for larval growth. This study evaluates food availability for brown hairstreak at different temperatures. Egg hatch and budburst were monitored from 2004 to 2008 at different sites in the Netherlands. Results showed ample food availability at all monitored temperatures and sites but the degree of synchrony varied strongly with spring temperatures. To further study the effect of temperature on synchronisation, an experiment using normal temperatures of a reference year (T) and temperatures of T + 5°C was carried out in climate chambers. At T + 5°C, both budburst and egg hatch took place about 20 days earlier and thus, on average, elevated temperature did not affect synchrony. However, the total period of budburst was 11 days longer, whereas the period of egg hatching was 3 days shorter. The implications for larval growth by the brown hairstreak under a warmer climate are considered.

    Vibrational Excitations in Weakly Coupled Single-Molecule Junctions: A Computational Analysis

    Full text link
    In bulk systems, molecules are routinely identified by their vibrational spectrum using Raman or infrared spectroscopy. In recent years, vibrational excitation lines have been observed in low-temperature conductance measurements on single molecule junctions and they can provide a similar means of identification. We present a method to efficiently calculate these excitation lines in weakly coupled, gateable single-molecule junctions, using a combination of ab initio density functional theory and rate equations. Our method takes transitions from excited to excited vibrational state into account by evaluating the Franck-Condon factors for an arbitrary number of vibrational quanta, and is therefore able to predict qualitatively different behaviour from calculations limited to transitions from ground state to excited vibrational state. We find that the vibrational spectrum is sensitive to the molecular contact geometry and the charge state, and that it is generally necessary to take more than one vibrational quantum into account. Quantitative comparison to previously reported measurements on pi-conjugated molecules reveals that our method is able to characterize the vibrational excitations and can be used to identify single molecules in a junction. The method is computationally feasible on commodity hardware.Comment: 9 pages, 7 figure

    Constraints on Gamma-ray Emission from the Galactic Plane at 300 TeV

    Get PDF
    We describe a new search for diffuse ultrahigh energy gamma-ray emission associated with molecular clouds in the galactic disk. The Chicago Air Shower Array (CASA), operating in coincidence with the Michigan muon array (MIA), has recorded over 2.2 x 10^{9} air showers from April 4, 1990 to October 7, 1995. We search for gamma rays based upon the muon content of air showers arriving from the direction of the galactic plane. We find no significant evidence for diffuse gamma-ray emission, and we set an upper limit on the ratio of gamma rays to normal hadronic cosmic rays at less than 2.4 x 10^{-5} at 310 TeV (90% confidence limit) from the galactic plane region: (50 degrees < l < 200 degrees); -5 degrees < b < 5 degrees). This limit places a strong constraint on models for emission from molecular clouds in the galaxy. We rule out significant spectral hardening in the outer galaxy, and conclude that emission from the plane at these energies is likely to be dominated by the decay of neutral pions resulting from cosmic rays interactions with passive target gas molecules.Comment: Astrophysical Journal, submitted, 11 pages, AASTeX Latex, 3 Postscript figure
    corecore