83 research outputs found

    "Cartesian light": unconventional propagation of light in a 3D superlattice of coupled cavities within a 3D photonic band gap

    Get PDF
    We explore the unconventional propagation of light in a three-dimensional (3D) superlattice of coupled resonant cavities in a 3D photonic band gap crystal. Such a 3D cavity superlattice is the photonic analogue of the Anderson model for spins and electrons in the limit of zero disorder. Using the plane-wave expansion method, we calculate the dispersion relations of the 3D cavity superlattice with the cubic inverse woodpile structure that reveal five coupled-cavity bands, typical of quadrupole-like resonances. For three out of five bands, we observe that the dispersion bandwidth is significantly larger in the (kx,kz)(k_x, k_z)-diagonal directions than in other directions. To explain the directionality of the dispersion bandwidth, we employ the tight-binding method from which we derive coupling coefficients in 3D. For all converged coupled-cavity bands, we find that light hops predominantly in a few high-symmetry directions including the Cartesian (x,y,z)(x, y, z) directions, therefore we propose the name "Cartesian light". Such 3D Cartesian hopping of light in a band gap yields propagation as superlattice Bloch modes that differ fundamentally from the conventional 3D spatially-extended Bloch wave propagation in crystals, from light tunneling through a band gap, from coupled-resonator optical waveguiding, and also from light diffusing at the edge of a gap

    Symmetries and Wavefunctions of Photons Confined in 3D Photonic Band Gap Superlattices

    Get PDF
    We perform a computational study of confined photonic states that appear in a three-dimensional (3D) superlattice of coupled cavities, resulting from a superstructure of intentional defects. The states are isolated from the vacuum by a 3D photonic band gap, using a diamond-like inverse woodpile crystal structure, and exhibit 'Cartesian' hopping of photons in high-symmetry directions. We investigate the confinement dimensionality to verify which states are fully 3D confined, using a recently developed scaling theory to analyze the influence of the structural parameters of the 3D crystal. We create confinement maps that trace the frequencies of 3D confined bands for select combinations of key structural parameters, namely the pore radii of the underlying regular crystal and of the defect pores. We find that a certain minimum difference between the regular and defect pore radii is necessary for 3D confined bands to appear, and that an increasing difference between the defect pore radii from the regular radii supports more 3D confined bands. In our analysis we find that their symmetries and spatial distributions are more varied than electronic orbitals known from solid state physics. We also discover pairs of degenerate 3D confined bands with p-like orbital shapes and mirror symmetries matching the symmetry of the superlattice. Finally, we investigate the enhancement of the local density of optical states (LDOS) for cavity quantum electrodynamics (cQED) applications. We find that donor-like superlattices, i.e., where the defect pores are smaller than the regular pores, provide greater enhancement in the air region than acceptor-like structures with larger defect pores, and thus offer better prospects for doping with quantum dots and ultimately for 3D networks of single photons steered across strongly-coupled cavities

    Unsupervised Machine Learning to Classify the Confinement of Waves in Periodic Superstructures

    Get PDF
    We employ unsupervised machine learning to enhance the accuracy of our recently presented scaling method for wave confinement analysis [1]. We employ the standard k-means++ algorithm as well as our own model-based algorithm. We investigate cluster validity indices as a means to find the correct number of confinement dimensionalities to be used as an input to the clustering algorithms. Subsequently, we analyze the performance of the two clustering algorithms when compared to the direct application of the scaling method without clustering. We find that the clustering approach provides more physically meaningful results, but may struggle with identifying the correct set of confinement dimensionalities. We conclude that the most accurate outcome is obtained by first applying the direct scaling to find the correct set of confinement dimensionalities and subsequently employing clustering to refine the results. Moreover, our model-based algorithm outperforms the standard k-means++ clustering.Comment: 24 pages, 11 figure

    Symmetries and Wavefunctions of Photons Confined in 3D Photonic Band Gap Superlattices

    Full text link
    We perform a computational study of confined photonic states that appear in a three-dimensional (3D) superlattice of coupled cavities, resulting from a superstructure of intentional defects. The states are isolated from the vacuum by a 3D photonic band gap, using a diamond-like inverse woodpile crystal structure, and exhibit 'Cartesian' hopping of photons in high-symmetry directions. We investigate the confinement dimensionality to verify which states are fully 3D confined, using a recently developed scaling theory to analyze the influence of the structural parameters of the 3D crystal. We create confinement maps that trace the frequencies of 3D confined bands for select combinations of key structural parameters, namely the pore radii of the underlying regular crystal and of the defect pores. We find that a certain minimum difference between the regular and defect pore radii is necessary for 3D confined bands to appear, and that an increasing difference between the defect pore radii from the regular radii supports more 3D confined bands. In our analysis we find that their symmetries and spatial distributions are more varied than electronic orbitals known from solid state physics. We also discover pairs of degenerate 3D confined bands with p-like orbital shapes and mirror symmetries matching the symmetry of the superlattice. Finally, we investigate the enhancement of the local density of optical states (LDOS) for cavity quantum electrodynamics (cQED) applications. We find that donor-like superlattices, i.e., where the defect pores are smaller than the regular pores, provide greater enhancement in the air region than acceptor-like structures with larger defect pores, and thus offer better prospects for doping with quantum dots and ultimately for 3D networks of single photons steered across strongly-coupled cavities

    LIDAR mapping and coastal water bathymetric surveys of the Maltese Islands

    Get PDF
    In the past months TerraImaging has performed the first fully integrated 3D survey of the Maltese Archipelago including the main land, the shoreline and the ocean floor within one nautical mile from the coastline. The survey is part of a project to develop a national environmental monitoring infrastructure and capacity, co-financed by the European Regional Development Fund, for the Maltese Environment and Planning Authority. It contributes to a baseline survey of the Maltese Islands and will complement side sonar and echosounder data, bathymetric and topographic LIDAR and oblique imagery, all acquired with the latest generation of equipment, to produce an integrated 3D perspective of the Maltese Islands. The result is a unique homogeneous data set of Malta from the deep bottom of the ocean to the top of the church spires. All data from the project will be viewable from a web portal, which will be launched towards the end of the project. Each data set poses its own challenges, not only during the acquisition but also in the data processing. During the presentation these aspects will be highlighted as well as the quality assessment of the separate data sets and the seamless merging of the data to provide a fully integrated 3D model of the Maltese Archipelago.peer-reviewe

    Impact of <sup>18F</sup>FDG-PET/CT and Laparoscopy in Staging of Locally Advanced Gastric Cancer:A Cost Analysis in the Prospective Multicenter PLASTIC-Study

    Get PDF
    Background: Unnecessary D2-gastrectomy and associated costs can be prevented after detecting non-curable gastric cancer, but impact of staging on treatment costs is unclear. This study determined the cost impact of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18FFDG-PET/CT) and staging laparoscopy (SL) in gastric cancer staging. Materials and Methods:In this cost analysis, four staging strategies were modeled in a decision tree: (1) 18FFDG-PET/CT first, then SL, (2) SL only, (3) 18FFDG-PET/CT only, and (4) neither SL nor 18FFDG-PET/CT. Costs were assessed on the basis of the prospective PLASTIC-study, which evaluated adding 18FFDG-PET/CT and SL to staging advanced gastric cancer (cT3–4 and/or cN+) in 18 Dutch hospitals. The Dutch Healthcare Authority provided 18FFDG-PET/CT unit costs. SL unit costs were calculated bottom-up. Gastrectomy-associated costs were collected with hospital claim data until 30 days postoperatively. Uncertainty was assessed in a probabilistic sensitivity analysis (1000 iterations). Results: 18FFDG-PET/CT costs were €1104 including biopsy/cytology. Bottom-up calculations totaled €1537 per SL. D2-gastrectomy costs were €19,308. Total costs per patient were €18,137 for strategy 1, €17,079 for strategy 2, and €19,805 for strategy 3. If all patients undergo gastrectomy, total costs were €18,959 per patient (strategy 4). Performing SL only reduced costs by €1880 per patient. Adding 18FFDG-PET/CT to SL increased costs by €1058 per patient; IQR €870–1253 in the sensitivity analysis. Conclusions:For advanced gastric cancer, performing SL resulted in substantial cost savings by reducing unnecessary gastrectomies. In contrast, routine 18FFDG-PET/CT increased costs without substantially reducing unnecessary gastrectomies, and is not recommended due to limited impact with major costs. Trial registration: NCT03208621. This trial was registered prospectively on 30-06-2017.</p

    <sup>18</sup>F-Fludeoxyglucose-Positron Emission Tomography/Computed Tomography and Laparoscopy for Staging of Locally Advanced Gastric Cancer:A Multicenter Prospective Dutch Cohort Study (PLASTIC)

    Get PDF
    Importance: The optimal staging for gastric cancer remains a matter of debate. Objective: To evaluate the value of 18F-fludeoxyglucose-positron emission tomography with computed tomography (FDG-PET/CT) and staging laparoscopy (SL) in addition to initial staging by means of gastroscopy and CT in patients with locally advanced gastric cancer. Design, Setting, and Participants: This multicenter prospective, observational cohort study included 394 patients with locally advanced, clinically curable gastric adenocarcinoma (≥cT3 and/or N+, M0 category based on CT) between August 1, 2017, and February 1, 2020. Exposures: All patients underwent an FDG-PET/CT and/or SL in addition to initial staging. Main Outcomes and Measures: The primary outcome was the number of patients in whom the intent of treatment changed based on the results of these 2 investigations. Secondary outcomes included diagnostic performance, number of incidental findings on FDG-PET/CT, morbidity and mortality after SL, and diagnostic delay. Results: Of the 394 patients included, 256 (65%) were men and mean (SD) age was 67.6 (10.7) years. A total of 382 patients underwent FDG-PET/CT and 357 underwent SL. Treatment intent changed from curative to palliative in 65 patients (16%) based on the additional FDG-PET/CT and SL findings. FDG-PET/CT detected distant metastases in 12 patients (3%), and SL detected peritoneal or locally nonresectable disease in 73 patients (19%), with an overlap of 7 patients (2%). FDG-PET/CT had a sensitivity of 33% (95% CI, 17%-53%) and specificity of 97% (95% CI, 94%-99%) in detecting distant metastases. Secondary findings on FDG/PET were found in 83 of 382 patients (22%), which led to additional examinations in 65 of 394 patients (16%). Staging laparoscopy resulted in a complication requiring reintervention in 3 patients (0.8%) without postoperative mortality. The mean (SD) diagnostic delay was 19 (14) days. Conclusions and Relevance: This study's findings suggest an apparently limited additional value of FDG-PET/CT; however, SL added considerably to the staging process of locally advanced gastric cancer by detection of peritoneal and nonresectable disease. Therefore, it may be useful to include SL in guidelines for staging advanced gastric cancer, but not FDG-PET/CT
    • …
    corecore