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Cartesian light: Unconventional propagation of light in a three-dimensional superlattice of coupled
cavities within a three-dimensional photonic band gap
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We explore the unconventional propagation of light in a three-dimensional (3D) superlattice of coupled
resonant cavities in a 3D photonic band-gap crystal. Such a 3D cavity superlattice is the photonic analog of the
Anderson model for spins and electrons in the limit of zero disorder. Using the plane-wave expansion method,
we calculate the dispersion relations of the 3D cavity superlattice with the cubic inverse woodpile structure that
reveal five coupled-cavity bands, typical of quadrupole-like resonances. For three out of five bands, we observe
that the dispersion bandwidth is significantly larger in the (kx, kz )-diagonal directions than in other directions.
To explain the directionality of the dispersion bandwidth, we employ the tight-binding method from which we
derive coupling coefficients in three dimensions. For all converged coupled-cavity bands, we find that light
hops predominantly in a few high-symmetry directions including the Cartesian (x, y, z) directions, therefore we
propose the name “Cartesian light.” Such 3D Cartesian hopping of light in a band gap yields propagation as
superlattice Bloch modes that differ fundamentally from the conventional 3D spatially extended Bloch wave
propagation in crystals, from light tunneling through a band gap, from coupled-resonator optical waveguiding,
and also from light diffusing at the edge of a gap.
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I. INTRODUCTION

Ever since the emergence of the field of nanophotonics,
it has been well known that fruitful analogies can be drawn
between the behavior of photons at the nanoscale on the
one hand, and the physics of electrons, spins, and phonons
in condensed matter on the other hand [1–6]. The semi-
nal phenomenon considered in this respect was the three-
dimensional (3D) Anderson localization of light [7,8]—in
analogy to Anderson localization of spins [9]—that continues
to receive attention to this day [10,11]. Other well-known
examples are the analogy between weak localization or en-
hanced backscattering of light [12,13] and of electrons [14],
and the analogy between a complete 3D photonic band gap in
a 3D photonic crystal [15–17] and the electronic band gap in
a semiconductor crystal such as silicon or germanium [18].

In this work, we explore the propagation of light in a 3D
superlattice of coupled resonant cavities inside a 3D photonic
band gap. The propagation of light in such a 3D cavity super-
lattice is analogous to electronic transport in an impurity band
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in a semiconductor [9,18,19]. Light hops from cavity to cavity
throughout the 3D superlattice, which differs fundamentally
from the conventional spatially extended Bloch wave prop-
agation outside the gap. Since the light hops predominantly
in a few high-symmetry directions including the Cartesian
(x, y, z) directions, we propose the name “Cartesian light”
for the unusual propagation of light in the 3D superlattice of
coupled cavities in a 3D photonic band gap.

In one dimension, a chain of coupled resonant cavities is
a well-known system that is known as a coupled resonator
optical waveguide (CROW) [20]. The weak coupling be-
tween cavities in a CROW has been demonstrated at optical
frequencies [21]. CROWs are widely studied for efficient
nonlinear optical frequency conversion and for perfect trans-
mission through bends, and for the one-dimensional (1D)
localization of light [20,22]. Two-dimensional (2D) arrays of
coupled cavities have been studied, notably for unusual dis-
crete diffraction effects [23], for intricate coupled nanolasers
[24], for topologically protected propagation [25], and for
transverse localization [26,27]. The coupling between the
cavities at optical frequencies has been demonstrated to be
significantly larger than the fabrication-induced disorder in
the cavity frequencies [28]. In 3D resonator arrays without
a band gap, topologically protected propagation was stud-
ied [29,30], as well as the percolation of light through 3D
lattices of coupled resonant microspheres [31] and dynamic
localization of light [32]. In 3D photonic band gap crystals
in the microwave regime, slow heavy-photon propagation was
reported in a 1D array of weakly coupled cavities [33–35].
Numerical calculations of a 2D array of cavities embedded
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in a 3D woodpile photonic crystal revealed ultraslow and
negative group velocities [36]. To the best of our knowledge,
3D superlattices of coupled cavities with resonances in a 3D
photonic band gap have not yet been studied before.

II. METHODS

In this paper, we study a 3D cavity superlattice that is
embedded in a 3D photonic band-gap crystal that has an
inverse woodpile structure. This structure has nearly the same
symmetry as a diamond crystal of carbon atoms [37], yet
thousandfold magnified, as illustrated in a youtube animation
[38]. The inverse woodpile crystal structure consists of two
perpendicular 2D arrays of nanopores with radius r in a high-
index medium such as silicon [37], as illustrated in Fig. 1(a).
Each 2D pore array corresponds to a diamond 110 crystal face.
In view of the arrangement of the nanopores, it appears to
be convenient to employ a tetragonal unit cell [39,40] instead
of the conventional cubic unit cell [18]. The tetragonal unit
cell has lattice parameters c (in the x and z directions) and
a (in the y direction) in a ratio a/c = √

2 to ensure a cubic
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FIG. 1. (a) Design of a single cavity in an inverse woodpile
photonic band-gap crystal shown in a cutout of an MxMyMz = 3 ×
3 × 3 supercell that is surrounded by boxed lines. The high-index
backbone is shown in gray. Two proximal smaller defect pores are
indicated in green, and the cavity region is highlighted as the bright
region at the center. The tetragonal lattice parameters a and c are
shown, as well as the x, y, z coordinate system. (b) (x, z) and (x, y)
cross sections through a 3D superlattice of resonant cavities, with
red circles indicating cavities and dashed rectangles representing unit
cells of the underlying inverse woodpile crystal structure [see (a)].
The lattice parameters (cx

s , as, cz
s) of the superlattice are shown, as

well as the x, y, z coordinate system.

crystal structure. More details, notably on the Brillouin zone,
are presented in Appendix A.

Inverse woodpile photonic crystals possess a broad 3D
photonic band gap, whose width strongly depends on the
radius r of the pores [37,39,40]. For a normalized pore ra-
dius r/a = 0.24—as considered here—a maximum relative
bandwidth �ωpbg/ωc = 25.3% occurs for ε = 12.1 typical
of silicon [39,40], with �ωpbg the frequency width of the
band gap, and ωc the band gap’s center frequency. 3D inverse
woodpile crystal nanostructures have been fabricated from a
number of different high-refractive index backbones [41–46].
In nanophotonic experiments, the potential of silicon inverse
woodpiles was demonstrated by the observation of a broad
3D photonic band gap for many angles [47], as well as a
strong spontaneous emission inhibition of embedded quantum
dots [48].

To create a resonant cavity in an inverse woodpile photonic
crystal, Ref. [49] proposed a design whereby two proximal
perpendicular pores have a smaller radius (r′ < r) than all
other pores, as shown in Fig. 1(a). Near the intersection region
of the two smaller pores, the light is confined in all three direc-
tions to within a mode volume as small as Vmode = λ3, where
λ is the free-space wavelength [49]. Supercell band structures
revealed up to five resonances within the band gap of the
perfect crystal, depending on the defect pore radius r′ [49],
that have quadrupolar symmetry [50]. The best confinement
occurs for a defect radius r′/r = 0.5 that is also considered
here.

Figure 1(b) shows a 3D superlattice of cavities as is stud-
ied here, where each sphere indicates one cavity, as shown
in Fig. 1(a). The cavity superlattice has lattice parameters
(cx

s , as, cz
s) in the (x, y, z) directions that are integer multiples

of the underlying inverse woodpile lattice parameters: cx
s =

Mxc, as = Mya, cz
s = Mzc. Here, we study the MxMyMz =

3 × 3 × 3 superlattice such that the cavities are repeated
every three unit cells with lattice parameters cx

s = 3c, as =
3a, cz

s = 3c. Thus, the cavity superlattice is also cubic, similar
to the underlying inverse woodpile structure (see Sec. IV for
additional discussion).

We have calculated the band structure of the 3D cavity su-
perlattice using the plane-wave expansion method [17,18,51].
Using the Richardson extrapolation method allows us to es-
timate the frequencies in the limit of infinite grid resolution
[52,53]. Details on the calculations and the convergence are
given in Appendix B. All calculations were performed on
the “Serendipity” cluster in the MACS group at the MESA+

Institute [54]. Even on this powerful computer cluster, the
calculations took 210 h.

III. RESULTS

A. Band structure of coupled cavity resonances

In Fig. 2(a), the band structures are shown of a 3D cav-
ity superlattice (MxMyMz = 3 × 3 × 3) in an inverse wood-
pile photonic band gap crystal made of silicon. As a re-
sult of the intentional defect pores, many bands appear in
the band gap of the perfect crystal between reduced fre-
quencies ω̃ = ωa/(2πc) = 0.492 and 0.634. The lowest five
bands between ω̃ = 0.5 and 0.55 have a low dispersion and
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FIG. 2. (a) Black curves are photonic bands of a 3D inverse
woodpile photonic band-gap crystal (r/a = 0.24, εSi = 12.1) with
two proximate defect pores (r′/r = 0.5). The abscissa indicates the
wave vector between the high-symmetry points of the Brillouin zone
(see Appendix A). The 3D photonic band gap of the perfect crystal
is shown as a red bar, and the range of allowed modes outside the
band gap is shown in gray. The five bands of coupled-cavity modes
are highlighted. (b) Zoom-in of the five coupled-cavity bands (blue
circles), labeled m = 1, . . . , 5. The m = 3, 4, 5 bands are accurately
described by the tight-binding model (red curves).

correspond to the five cavity resonances that are from now on
labeled as m = 1, . . . , 5. The m = 3, 4, 5 bands are isolated
in frequency, unlike the situation in solid-state physics where
the bands arising from d-orbitals are hybridized [18]. The
dispersions of the bands in Fig. 2(a) agree well with those
of Woldering et al. [49]. The dispersive bands in the top
half of the gap (between ω̃ = 0.55 and 0.634) have unknown
character, and may include waveguiding along the defect
pores.

A closer inspection of the five dispersionless cavity bands
in Fig. 2(b) reveals that these bands have nonzero bandwidths,
indicating that cavity resonances in the MxMyMz = 3 × 3 × 3
superlattice are coupled, as is investigated in this paper. Our
results agree well with a simultaneous investigation of a single
cavity in an inverse woodpile crystal with finite support,
studied by other numerical methods [50]. Notably, Ref. [50]
also reports that the first two bands are nearly degenerate.
Based on the occurrence of five cavity bands, on degeneracies
between bands, and on the field distribution (reported in
Ref. [49]), it has been concluded that the resonances of the
inverse woodpile cavity have quadrupolar symmetry and are
the optical analogs of d-orbitals in solid-state physics [50].

FIG. 3. (a) Polar plot of the dispersion bandwidth for the m =
3 coupled-cavity band in the (kX , kZ ) plane. The X, U , and Z
high-symmetry points are shown. (b) Polar plot of the dispersion
bandwidth for the m = 3 coupled-cavity band in the (kY , kU ) plane.
The Y and U high-symmetry points are shown. The black circles
indicate the plane-wave results (cf. Fig. 2), and the red lines are
guides to the eye.

Therefore, it is naively expected that neighboring cavities
couple in diagonal directions.

B. Dispersion bandwidths

For a 1D coupled-resonator optical waveguide (CROW), it
is well known that the coupling coefficient along the waveg-
uide is proportional to the dispersion bandwidth [20,35,55].
A straightforward extension of this notion to a 3D cavity
superlattice is to consider the dispersion bandwidth in various
crystal directions, since this is straightforward to derive from
photonic band structures as in Fig. 2. For a given crystal direc-
tion characterized by wave vector k, the dispersion bandwidth
is defined as

�ω̃ ≡ |ω̃max − ω̃min|�→kBZ , (1)

in other words, the absolute value of the difference between
the maximum and minimum frequencies on a trajectory in
reciprocal space between the origin � and the edge of the
Brillouin zone kBZ in the direction of k. As an example, for
the m = 3 coupled-cavity band in Fig. 2(b), between � and Z
the minimum and maximum frequencies are nearly the same
(ω̃ = 0.521) hence the bandwidth �ω̃ is nearly zero. Between
� and U , the minimum and maximum frequencies differ much
more (ω̃ = 0.520–0.521) hence the dispersion bandwidth is
much greater in the diagonal direction.

A polar plot of the dispersion bandwidth �ω versus wave
vector k in the (kX , kZ ) plane is shown in Fig. 3(a). From the
band frequencies mentioned above, the dispersion bandwidth
is very small in the real-space x and z directions (correspond-
ing to �X and �Z , respectively, in reciprocal space). In the
diagonal directions that correspond to the �U high-symmetry
trajectory, the dispersion bandwidth is much greater. As seen
from a given central cavity in real space, the wave vector k
is then directed toward a second-nearest-neighboring cavity
in the diagonal 1/

√
2.(1, 0, 1) direction (see Appendix A).

The polar plot of the dispersion bandwidth for m = 3 there-
fore looks like a quadrupolar radiation pattern. Based on
the 1D CROW reasoning given above, one tentatively in-
fers that light is transported through the 3D cavity superlat-
tice preferentially in the xz diagonal (corresponding to �U )
directions.
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FIG. 4. Polar plots of the dispersion bandwidth vs wave vector
for the (a),(b) m = 4 and (c),(d) m = 5 coupled-cavity bands. Panels
(a),(c) are in the (kX , kZ ) plane and (b),(d) are in the (kY , kU ) plane.

Figure 3(b) shows the dispersion bandwidth �ω in the
(kY , kU ) plane. The largest bandwidth occurs at about 45◦
off the (XUZ ) plane, which corresponds to the �R high-
symmetry direction. The bandwidth in the �Y direction is
small, from which one tentatively infers that there is little light
transport in the y direction in real space.

The dispersion bandwidth for the m = 4, 5 bands is shown
in Figs. 4(a) and 4(b). For the m = 4 band, the dispersion
bandwidth is large in the diagonal directions that correspond
to the �U high-symmetry directions, and it is smaller in
the x and z directions (�X and �Z , respectively). Compared
to the m = 3 band, the dispersion bandwidth for the m = 4
band appears to be less strongly directional. To quantify the
directionality, we consider a directionality D ratio between the
maximum and the minimum bandwidths D = �ωmax/�ωmin

in the (kX , kZ ) plane, which yields a directionality of about
D = 4 that is much lower than D = 15 for the m = 3 band.

For the m = 5 band in Fig. 4(c), the polar plot of the disper-
sion bandwidth looks very much like a quadrupolar emission
pattern. The bandwidth is small in the diagonal directions that
correspond to the �U high-symmetry directions, about 2.5×
smaller than for the m = 4 band. The dispersion bandwidth
is much smaller in the x and z directions, corresponding to a
large directionality D = 26.

We have not analyzed the m = 1, 2 bands of coupled-cavity
modes, since the band structures do not converge monoton-
ically with increasing spatial resolution, as is elaborated in
Appendix B.

C. Coupling coefficients

To understand the coupling between the cavities in a
3D cavity superlattice more fundamentally, we derive the
coupling coefficients of light from the dispersion relations
using the tight-binding method; see Appendix C for de-
tails. Figure 2(b) shows that the m = 3 band is accurately
described by the tight-binding model. It appears that only
seven independent coupling coefficients κ are needed in

TABLE I. Dimensionless coupling coefficients κi for seven dif-
ferent high-symmetry directions i (x, y, z, xy, xz, yz, xyz), as defined
in Eq. (C19) in Appendix C, for the cavity superlattice bands m =
3, 4, 5. We also list the parameter β that is defined in Eq. (C18) in
Appendix C.

Coupling coefficients m = 3 m = 4 m = 5

β −1.8 × 10−10 +3.3 × 10−10 −1.8 × 10−10

κx +5.2 × 10−4 −1.0 × 10−3 +5.4 × 10−4

κy +4.7 × 10−5 +4.3 × 10−5 +3.0 × 10−5

κz +5.1 × 10−4 −1.1 × 10−3 +5.3 × 10−4

κxz (//�U ) −4.2 × 10−4 +6.6 × 10−5 −1.5 × 10−4

κxy (// �S) −1.4 × 10−6 +9.7 × 10−6 −4.6 × 10−5

κyz (//�T ) −1.6 × 10−6 +1.0 × 10−5 −4.6 × 10−5

κxyz (//�R) +7.4 × 10−6 +2.4 × 10−6 −2.2 × 10−5

the tight-binding model, namely for the real-space direc-
tions x, y, z, xz-diagonal (corresponding to �U in recipro-
cal space), xy-diagonal (corresponding to �S), yz-diagonal
(corresponding to �T ), and xyz-diagonal (corresponding to
�R). The reasons are as follows: since the inverse woodpile
cavity has mirror symmetry with respect to the (y, z) and (x, y)
planes, the coupling coefficients in the +x and +z directions
are symmetry-related to those in the −x and −z directions,
respectively, and the coefficients in the xz-diagonal directions
are symmetry-related to each other. The coupling coefficients
in the +y and −y directions are equal by reciprocity; see
Appendix D.

The coupling coefficients are given in Table I [57]. For
the m = 3 band the coupling coefficients of light are overlaid
on the cavity superlattice structure in Fig. 5. In the x and z
directions the coupling coefficients are relatively large and
positive, in the xz-diagonal directions the coupling coeffi-
cients are large and negative, in the y direction the coupling
coefficient is about 10× smaller, and in all other directions the

FIG. 5. Coupling coefficients of light from a central cavity (black
circle) to neighboring cavities (other circles) for the m = 3 coupled-
cavity band, indicated with arrows. Nonzero coefficients only occur
in the (x, y) and (x, z) planes. Blue and red indicate negative and
positive coupling coefficients, respectively, as shown by the color bar.
The x, y, z coordinate system is shown. This figure has been made
using ParaView [56].
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coupling coefficients are vanishingly small (typically 100×
less).

Remarkably, the simultaneous occurrence of large cou-
pling coefficients with near-vanishing dispersion bandwidths
means that 1D CROW-like arguments do not hold for 3D
cavity superlattices. In other words, the bandwidth in a par-
ticular crystal direction for a 3D cavity superlattice is not
necessarily proportional to the coupling coefficient in the
same direction in real space. The small difference between the
x and z coefficients confirms that the x and z directions are not
symmetry-related for the inverse-woodpile cavity, as opposed
to the perfect inverse-woodpile structure [58].

According to a 1D CROW-like argument, the large cou-
pling coefficient in the xz-diagonal directions agrees with the
observation of a large dispersion bandwidth in the diagonal
U direction; see Fig. 3. However, the negative sign disagrees
with the fact that at the U point the band frequency is lower
than at the � point, since the reverse is true for a 1D CROW;
see Ref. [20].

The κy coupling coefficient in the y direction is small, in
agreement with the band frequencies that are almost the same
at � and Y . It is remarkable that the κy coupling coefficient
is 10× smaller than the coefficients for the x or z directions,
while the nearest-neighbor distance is only a (

√
2) greater

than in the x or z directions, which would correspond to only

FIG. 6. (a) Coupling coefficients of light from a central cavity
(black circle) to neighboring cavities (other circles) for the m = 4
coupled-cavity band, indicated with arrows. Nonzero coefficients
only occur in the (x, y) and (x, z) planes. Blue and red indicate nega-
tive (positive) coupling coefficients, for which bonding (antibonding)
resonances of the two coupled cavities are energetically favorable.
The x, y, z coordinate system is shown. (b) Coupling coefficients
of light from a central cavity (black circle) to neighboring cavities
(other circles) for the m = 5 coupled-cavity band.

an [exp(
√

2) ≈ 4×] smaller coefficient for cavities coupled
by evanescent Bloch modes. We surmise that the quadrupolar
field pattern of each cavity in the xz plane couples poorly to
a neighboring cavity in a neighboring xz plane. Therefore,
light mostly hops in 2D (x, z)-layers, which is analogous to
2D electron transport in graphite or graphene layers [59,60].
Since the light propagates very unusually by hopping only in a
few discrete directions, we propose the name “Cartesian light”
for the propagation of light in a 3D cavity superlattice.

The coupling coefficients of light for the m = 4, 5 bands
are shown in Fig. 6. For the m = 4 band, the nonzero co-
efficients are κx and κz. The coupling coefficients to all
other neighboring cavities vanish, including the coefficient
κy in the y direction. In the hopping of the m = 4 band, we
find the ultimate Cartesian light: light hops only in the x-z
directions. For the m = 5 band, the nonzero coefficients are
κx, κy, κz, κxz, κxy, κyz, and κxyz, that is, nonzero coupling
coefficients to all neighboring cavities. In the (x, z) plane,
there is a mix of positive x and z coupling coefficients and
negative xz-diagonal coupling coefficients, which is similar to
the m = 3 band.

D. Propagation in 3D on the superlattice

We now discuss the propagation in real space, and why the
dispersion bandwidth of the m = 3 band is much larger in the
U direction than in the other directions in the (kX , kZ ) plane in
reciprocal space. We first discuss the dispersion bandwidth in
the xz-diagonal directions that are symmetry-related to each
other, and that correspond to the �U direction in reciprocal
space.

Let us consider the relative phase of the resonating cavities
for a wave vector at the U -point (k = kBZ = U ), as shown
in Fig. 7. Since this coupled resonance eigenmode is a Bloch
wave of the 3D superlattice (with a phase front as indicated
in Fig. 7), it is clear that this collective oscillation differs
fundamentally from waveguiding behavior in a 1D CROW;
in other words, the superlattice Bloch modes differ from the
ones in a CROW.

In Fig. 7, neighboring cavities in the xz-diagonal direction
resonate in-phase with each other. Neighboring cavities in

z
x

ku

FIG. 7. Relative phase of the resonating cavities for a coupled-
cavity mode with a wave vector at the U high-symmetry point. As
seen from a given cavity, the wave vector k is directed toward an
xz diagonally neighboring cavity. The black dashed line indicates
a wavefront of the Bloch wave. The blue and red cavities resonate
out-of-phase with each other. The couplings are indicated with ar-
rows, which are green if the corresponding cavities resonate with an
energetically favorable relative phase, as is the case for all couplings.
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kx

z
x

FIG. 8. Relative phase of the resonating cavities for a coupled-
cavity mode with a wave vector at the X high-symmetry point. As
is seen from a given cavity, the wave vector k is directed toward
a nearest-neighboring cavity. The black dashed line indicates a
wavefront of the Bloch wave. The blue and red cavities resonate out-
of-phase with each other. The couplings are indicated with arrows:
green arrows indicate an energetically favorable relative phase and
red arrows indicate an unfavorable phase.

the x or z direction resonate out-of-phase with each other.
Hence, there is a checkerboard pattern of two sublattices
of cavities that resonate out-of-phase with each other. The
in-phase resonance of neighboring cavities in the xz-diagonal
direction is energetically favorable for the negative coupling
coefficient in the xz-diagonal directions, as can be understood
from Eq. (C19) in Appendix C. The out-of-phase resonance
of neighboring cavities in the x or z direction is energetically
favorable for the positive coupling coefficient in the x or z
direction. Hence, the checkerboard pattern of out-of-phase
resonating cavities is energetically favorable for all coupling
coefficients in the (x, z) plane, and the band frequency is
relatively low at the U high-symmetry point.

We now consider the superlattice Bloch mode at the k = �

point (the origin in reciprocal space). All cavities resonate
in-phase with each other, which is energetically favorable for
the negative coupling coefficient in the xz-diagonal direction.
However, it is not energetically favorable for the positive
coupling coefficients in the x or z direction. Hence, the band
frequency is relatively high at the � point, and higher than
at the U -point, in agreement with the observation of large
dispersion bandwidth in Fig. 2(b).

We now discuss the dispersion bandwidth in any direction
in the (kX , kZ ) plane other than the xz-diagonal direction.
For example, the relative phase of the resonating cavities
at the X high-symmetry point is shown in Fig. 8. Only the
checkerboard pattern of out-of-phase resonating cavities at
the U high-symmetry point is energetically favorable for all
coupling coefficients in the (x, z) plane. For any other point in
the Brillouin zone, the relative phase of the resonating cavities
is not energetically favorable for all coupling coefficients in
the (x, z) plane. Hence, the dispersion bandwidth is small for
directions other than the xz-diagonal direction, in agreement
with the superlattice band structures in Fig. 2(b).

IV. DISCUSSION

A. Differences with other forms of light transport

Cartesian light propagation on a 3D superlattice of cavities
differs fundamentally from other known modes of propa-

gation in periodic nanophotonic systems, notably from the
conventional 3D spatially extended Bloch wave propagation
in crystals, from light tunneling through a band gap, from
coupled-resonator optical waveguiding, and also from light
diffusing at the edge of a gap.

(i) A characteristic feature of the 3D superlattice Bloch
modes is that they are constructed from modes where the
light field is hopping from lattice site to lattice site. In other
words, the field pattern has its maxima on the lattice sites
(i.e., the cavities) and decays exponentially in between lattice
sites, since isolated cavities are tuned inside the photonic band
gap where the wave vector is complex. In contrast, the Bloch
modes outside the photonic band gap are constructed from
purely real modes of propagation; there is no reason for field
maxima to be located on preferred positions in the crystal.

(ii) A second characteristic feature of the 3D superlattice
Bloch modes is that they are genuine modes of propagation
centered within the 3D photonic band gap. In this sense, they
are distinguished from the modes in photonic crystals with
finite support that were recently described in Ref. [61]. In that
study, it was found that the finite extent of a photonic band-
gap crystal leads to the filling of the density of states (DOS)
in the band gap by states that are centered outside the band
gap, while extending into the band gap due to their substantial
bandwidth.

(iii) The 3D Cartesian superlattice propagation differs fun-
damentally from the propagation in lower-dimensional 1D (a
CROW) and 2D arrays of cavities. First, in Sec. III D we have
already discussed that the superlattice modes differ fundamen-
tally from those of a CROW. In other words, a 3D superlattice
does not seem to be a “3D CROW.” Secondly, if we perturb the
frequency of one of the cavities in a superlattice, a bound state
appears instantaneously in 1D and 2D, whereas a threshold
frequency difference is required in 3D; see Ref. [62].

(iv) The propagation of light in a 3D cavity superlattice
in a photonic band gap differs fundamentally from directional
diffusion that was identified for 3D photonic band-gap crystals
with a certain degree of disorder [63]. In the latter case, the
modes of propagation are not waves but diffusive. Moreover,
the typical frequencies are at the edge of the band gap, hence
outside the gap, as opposed to the cavity superlattice modes
that reside within the band gap; see Fig. 2.

B. Crystal structures of the cavity superlattice

If the magnification factors of the superlattice’s lattice pa-
rameters, compared to the underlying crystal structure’s lattice
parameters, fulfill Mi �= (Mj, Mk ) (i, j, k = x, y, z), the cavity
superlattice is not cubic anymore—in contrast to the under-
lying inverse woodpile structure—but has become tetragonal.
In the most general case with Mx �= My �= Mz, the superlattice
has different cavity spacings in each direction (x, y, z); the su-
perlattice has then become orthorhombic. Given that cavities
in an inverse woodpile structure are necessarily located along
the smaller-pore line defects, we currently doubt whether it is
feasible to realize other 3D Bravais superlattices.

We have seen that for the m = 3, 4, 5 bands, the coupling
coefficient in the y-direction is smaller than in the (x, z) plane,
by typically 10×. To make the hopping of light more 3D,
it is necessary to increase the coupling coefficient in the
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y-direction compared to the coefficients in the (x, z)-
directions, which can be achieved by a closer cavity spacing
in the y-direction, for example in an MxMyMz = 3 × 2 × 3
supercell in the case of Mx = Mz = 3 (as studied here) or in
general for supercells with My < (Mx, Mz ).

Conversely, if it is desired to realize a superlattice with
effectively 2D transport of light in (x, z) planes, the super-
lattice parameter in the y-direction should be made greater
than the ones in the (x, z)-directions [My >> (Mx, Mz )]. In
this situation, the 2D transport of light may hold analogies
to that of charge carriers in graphite layers [59] or in high-Tc

superconductors.

C. Disorder

We have studied the dispersion and hopping for superlat-
tices without disorder. Let us briefly comment on the sen-
sitivity of the results to a small degree of disorder, since
we performed calculations for several grid resolutions in
Appendix B, and a change of the grid resolution implies a
slight shift in the geometry. On the one hand, we observed
that for all five bands of coupled-cavity modes, the center
frequency is highly sensitive to the grid resolution and there-
fore to disorder. This is likely the result of the lightning rod
effect of the cavity mode field pattern identified in Ref. [49],
wherein the inverse woodpile cavity resonances have regions
of high intensity at sharp corners in the dielectric material
[64,65]. If such sharp corners are slightly distorted, it is quite
conceivable that the overlap with the field pattern changes,
leading to a change in resonance frequency. On the other
hand, we observe for bands m = 3, 4, 5 that the features of the
dispersion bands remain the same while the grid resolution is
increased. Therefore, we expect the coupling coefficients for
the m = 3, 4, 5 bands to be robust to small degrees of disorder.

Commonly, in experimental nanophotonic studies one is
not only concerned about the effects of disorder (however
mild), but also about the effects of weak absorption. At
present, these two effects are treated on an equal footing as an
effective extinction. Recent work, however, by Wolff, Busch,
and Mortensen pointed out that the description of absorption
should be handled with care, as, for instance, apparent gaps
in the DOS due to Lorentzian dispersion vanish when proper
care is taken [66].

A 3D cavity superlattice is the photonic analog of the
Anderson model for spins and electrons [9], albeit in the
limit of zero disorder. The 3D cavity superlattice also cor-
responds to the Hubbard model without interactions [67,68].
We anticipate that the present study may form the basis
for further exploration of the physics of the 3D Anderson
model for nanophotonic cavity superlattices that will proceed
by introducing controlled degrees of disorder in the cavity
resonance frequencies.

D. Outlook

The 3D system of coupled photonic band-gap cavities
described here has a number of analogs in condensed-matter
physics, which may eventually be exploited to translate know-
how garnered in the photonic system to the other systems. For
instance, a feature that is readily available in optics is an input

beam of light that is both collimated (localized in wave-vector
space) and monochromatic (localized in frequency space.)
Therefore, in a photonic system it will be very feasible to
study both the wave vector and the frequency responses of
the coupled-cavity system. Hence, prospects are favorable to
map out dispersion surfaces—as shown in, e.g., Figs. 3(a)
and 3(b)—that are predicted in this paper. Since the inverse
woodpile cavities have a symmetry similar to a d-like atom,
such detailed maps may offer—within the limitations of the
electronic-photonic analogy—relevant information for such
solid-state crystals. Another condensed-matter system that
could profit from the detailed photonic probing is a 3D
superlattice of quantum dots with excitonic transport [69] that
is challenging to resolve in k-space. An interesting avenue is
to study 3D cavity superlattices where the lattice parameter
in the y-direction is increased in order to further decrease the
y-coupling. This situation could have potentially interesting
ramifications for the 2D materials that are enjoying an enor-
mous amount of scientific attention [59].

An attractive future line of research will be initiated by
studying a 3D cavity superlattice where each cavity holds
an active material, such as one (or more) two-level atom.
This hybrid combination allows one to explore light-matter
interactions deep inside the band gap that are well shielded
from any perturbing vacuum fluctuations by the surrounding
3D photonic band gap [70]. Indeed, recent parallel work
has pointed out that with inverse woodpile cavities one can
observe a substantially enhanced optical absorption at the
cavity locations, which offers favorable opportunities for tiny
optical sensors [50]. In the presence of two-level Cs atoms,
we anticipate hybrid dispersion effects much beyond those
observed before in weakly interacting opals [71]. In the
presence of disorder, the hybrid cavity-emitter superlattice
may reveal intriguing quantum-optical spin glass behavior, as
predicted by John and Quang [72]. In case the cavities are
doped with diamond NV centra, a possible application would
be a scalable and coherently linked network of NV-based
registers that is pursued for quantum information processing;
see Ref. [73]. In case each cavity and two-level emitter pair
can be brought into the strong-coupling regime of cavity
quantum electrodynamics (cQED), the concomitant photon-
blockade effect for each cavity-emitter pair will result in
an intricate repulsion between excitations (photons) hopping
through the superlattice. This physical situation is an example
of the repulsive bosonic system described by Fisher et al. that
is predicted to reveal phase transitions to boson localization
and the superfluid-insulator transition, or even to a Bose glass
[74]. There is surely no doubt that the prospect that photons
could reveal any such phase transition would be truly exciting.

V. SUMMARY

We present a study of the propagation of photons in a 3D
cavity superlattice within a 3D photonic band gap. Such a
3D cavity superlattice is the photonic analog of the Anderson
model in the limit of zero disorder. The light hops only
in a few high-symmetry directions including the Cartesian
(x, y, z) directions, therefore we propose the name “Cartesian
light.” 3D Cartesian hopping of light in a 3D band gap
yields propagation as superlattice Bloch modes that differ
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fundamentally from the conventional 3D spatially extended
Bloch wave propagation in crystals, from light tunneling
through a band gap, from coupled-resonator optical waveg-
uiding, and also from light diffusing at the edge of a gap. The
large coupling coefficients in the Cartesian directions occur
simultaneously with a near vanishing dispersion bandwidth
in this direction. This means that 1D CROW-like reasoning
does not hold for 3D cavity superlattices. The unusually small
dispersion bandwidth in the Cartesian directions is a result of
interplay between positive and negative coupling coefficients
in the Cartesian and diagonal directions.
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APPENDIX A: BRILLOUIN ZONE AND TETRAGONAL
UNIT CELL

Figure 1(a) shows a tetragonal representation of the
MxMyMz = 3 × 3 × 3 supercell of the cubic inverse woodpile
crystal structure including a pair of proximal defect nanopores
that form a resonant cavity. In terms of the unit vectors of the
conventional cubic diamond structure [18], the tetragonal unit
supercell has unit vectors ax = 1√

2
[Mx 0 Mx], ay = [0 My 0],

and az = 1√
2
[M̄z 0 Mz].

Figure 9 shows the first Brillouin zone of the inverse wood-
pile cavity superlattice with characteristic high-symmetry
points. The main axes are given by X = [π/cx

s , 0, 0], y =
[0, π/as, 0], and Z = [0, 0, π/cz

s]. The �X and �Z directions
are notable as they correspond to waves propagating along
each set of nanopores, while the diagonal �U direction lies
in between. Due to the geometry of the cavity (composed of
two proximal defect pores), the �X and �Z directions are
not symmetry-related, in contrast to the underlying inverse
woodpile crystal structure [58].

FIG. 9. First Brillouin zone of the inverse woodpile crystal struc-
ture showing the high-symmetry points X,Y, Z, S, R, T,U and the
origin called �.

APPENDIX B: CALCULATIONS AND CONVERGENCE

We have calculated the band structure of 3D cavity su-
perlattices using the plane-wave expansion method [17,18],
where we employed the well-known MIT PHOTONICBANDS

(MPB) package [51]. We performed calculations with in-
creasing spatial grid resolutions of 12 × 17 × 12, 24 × 34 ×
24, 48 × 68 × 48, and 96 × 136 × 96 per unit cell of the un-
derlying inverse woodpile crystal. Although the 12 × 17 × 12
calculation is a replication of Ref. [49], the results do not agree
perfectly since the subpixel averaging has been updated in
Version 1.5 of the MPB code that we use here. We verified that
with an older version of MPB our calculations agree exactly
with Ref. [49].

To study the convergence of the defect bands with increas-
ing spatial resolution, we show in Figs. 10(a) and 10(b) the
m = 1 and 3 defect bands, respectively, for all resolutions
considered. The general trend observed in the data—also
seen with the other three defect bands—is that the average
frequency of the bands decreases with increasing resolution,
where the initial decrease is fast, whereas for increasing
resolution the decrease slows down, and the Richardson-
extrapolated (or converged) band frequencies are reached at
a resolution of 96 × 136 × 96.

The initial refinement from 12 × 17 × 12 to 24 × 34 × 24
is remarkably large in comparison to the bandwidth of each
defect band. We speculate that the shifts are related to the
“lighting rod”-behavior of the field patterns of a cavity mode,
whereby the high fields are concentrated at sharp corners
[49,64,65]. A change in the grid resolution effectively corre-
sponds to a change in the geometry. At low resolution, the
field pattern likely “misses” the sharp features of the high-
index material, whereas with increased resolution the field
pattern increasingly fits within the high-index material, caus-
ing a decrease of the field energy—in view of the variational
principle [17]—as observed in Fig. 10.

FIG. 10. (a),(b) Dispersion relations of the m = 1, 3 bands of
coupled-cavity modes, respectively, for grid resolutions 12 × 17 ×
12 (black squares), 24 × 34 × 24 (red circles), 48 × 68 × 48 (blue
upward triangles), and 96 × 136 × 96 (magenta inverted triangles).
The Richardson extrapolated data are shown as green diamonds.
(c),(d) Overlaid dispersion relations where the center frequency of
each band is subtracted.
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To quantify the rate of convergence, we calculate the
convergence order following Ref. [52]. We assume that the
grid spacing h is sufficiently refined for the error E to asymp-
totically approach zero as

E = ω(h) − ωexact = Chp, (B1)

with ω(h) the frequency calculated for grid spacing h at a
given wave vector, ωexact the exact frequency at the same wave
vector, and C a constant. The convergence order p is obtained
from a sequence of three resolutions as [52]

p = ln

(
ω(h) − ω

(
h
2

)
ω

(
h
2

) − ω
(

h
4

)
)/√

2, (B2)

where we used the 12 × 17 × 12, 24 × 34 × 24, and 48 ×
68 × 48 resolution results. From data as shown in Figs. 10(a)
and 10(b), we obtain p = 1.85, 1.96, 2.24, 2.16, 2.10 for m =
1, 2, 3, 4, 5, respectively, in close agreement with the con-
vergence order p = 2 for the plane-wave expansion method
[51]. We therefore conclude that the band frequencies are
converging accurately, as expected.

Moreover, the convergence of the band frequencies allows
us to use Richardson extrapolation to obtain the band fre-
quency ωh=0 in the limit of infinite grid resolution (h = 0)
[52,53]. The frequency ωh=0 is estimated as

ωh=0 = ω

(
h

4

)
+ ω

(
h
4

) − ω
(

h
2

)
2p − 1

. (B3)

The Richardson-extrapolated frequencies are shown in
Figs. 10(a) and 10(b) as a function of wave vector for the
m = 1 and 3 defect bands, respectively. The Richardson-
extrapolated frequencies are slightly below the frequencies for
the finest grid resolution (96 × 136 × 96) as expected in case
of convergence [52].

Nevertheless, unexpected features were found in the dis-
persion relations as a function of spatial grid resolution. Fig-
ures 10(c) and 10(d) show the dispersion relations of the m =
1 and 3 defect bands that are overlaid for all grid resolutions
by subtracting the average band frequencies from the data
in Figs. 10(a) and 10(b). For the m = 1 defect band, we
observe that for resolutions 12 × 17 × 12 and 24 × 34 × 24,
the band between the T and Y high-symmetry points has
a maximum at the fourth symbol from the left, midway in
between T and Y . For 48 × 68 × 48 and 96 × 136 × 96, the
maximum has moved to the first symbol from the left, or
one-sixth of the way from T to Y . Thus, there is a qualitative
change in the dispersion relations as the grid is refined. Similar
observations were made on the m = 2 defect band. Therefore,
we do not trust the m = 1, 2 defect bands sufficiently to derive
coupling coefficients. In contrast, for the m = 3 defect band,
the maximum in frequency is always at the T point, thus the
shape is preserved, and the band readily converges. Similar
observations to those for m = 3 were made on the m = 4, 5
defect bands. Therefore, we trust the convergence of the m =
3, 4, 5 bands sufficiently to warrant the extraction of coupling
coefficients.

APPENDIX C: PHOTONIC TIGHT-BINDING METHOD

We employ the well-known tight-binding method to model
the dispersion of the defect bands [18,20]. In developing the
tight-binding approximation, we assume that in the vicinity
of each lattice point, the full periodic superlattice dielectric
function, ε, can be approximated by the dielectric function,
ε
, of a single cavity located at the lattice point. This assump-
tion is valid for the cavity superlattice, since the superlattice
dielectric function differs only from ε
 at the defect pores in
the superlattice that do not form part of the cavity, all of which
are at least a lattice constant away. We also assume that the
modes of the cavity are well localized; i.e., if Em


 is a mode of
a cavity at the origin,

∇ × ∇ × Em

 =

(

m

c

)2

ε
(r)Em

, (C1)

with 
m the resonance frequency of the single cavity and
c the speed of light, then we require that Em


(r) be very
small when r exceeds a distance of the order of the lattice
constant, which we shall refer to as the “range” of Em


. Let us
briefly verify this assumption: for the defect bands, the mode
volume is about V ≈ λ3, with λ the free-space wavelength
[49]. Hence, the electric field attenuates over a range of
about λ/2 in a given direction. We model the cavity mode
as an evanescent plane wave that attenuates by a factor of
1/e over this distance, which yields an imaginary part of the
wave vector of k′′ = 2/λ. The nearest-neighbor distances are
equal to the lattice parameters of the superlattice (cx

s , as, cz
s )

that are multiples of the inverse woodpile lattice parameters
(cx

s , as, cz
s ) = (3c, 3a, 3c) (with c = a/

√
2), and the reduced

frequency ω′ = a/λ of a cavity resonance is equal to ω′ =
0.52, . . . , 0.54 (for m = 3, 4, 5). For the directions x or z, this
yields a product of the imaginary part of the wave vector k′′
and the nearest-neighbor distance �r of

k′′�r = 2

λ
cx,z

s = 2
a
ω′

3c = 6
ω′
√

2
≈ 2.2. (C2)

Thus the electric field intensity from one cavity has attenuated
to as little as exp(−2.2) ≈ 0.11 at a nearest-neighboring
cavity in the directions x or z, and for the y direction the decay
is even greater, thereby readily fulfilling the requirements of
the tight-binding method.

In the tight-binding method, we write the superlattice
dielectric function ε as

ε = ε
 + �ε(r), (C3)

where �ε(r) contains all corrections to the cavity dielectric
function required to produce the full periodic dielectric func-
tion of the superlattice. Since the product �ε(r)Em


(r), though
nonzero, is exceedingly small, we might expect the solution to
the full superlattice Maxwell equations to be quite close to the
cavity wave function Em


(r) or to wave functions with which
Em


(r) is degenerate. Based on this expectation, one seeks an
E(r) that can be expanded in a relatively small number of
localized cavity wave functions:

E(r) =
∑

R

eik·R ∑
m

bmEm

(r − R). (C4)
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The wave vector k describes the relative phase of the resonat-
ing cavities and ensures that k satisfies the Bloch theorem for
the Brillouin zone of the superlattice of cavities.

If we multiply the superlattice Maxwell equations

∇ × ∇ × E(r) =
(ω

c

)2
[ε
(r) + �ε(r)]E(r) (C5)

by the cavity wave function En∗

 (r), where the star represents

the complex conjugate, integrate over all r, and use the fact
that ∫ ∞

−∞
En∗


 (r) · ∇ × ∇ × E(r)dr

=
∫ ∞

−∞
[∇ × ∇ × En


(r)]∗ · E(r)dr

=
(


n

c

)2 ∫
ε
(r)En∗


 (r) · E(r)dr, (C6)

we find that[(

n

c

)2

−
(

ω(k)

c

)2
] ∫ ∞

−∞
ε
(r)En∗


 (r) · E(r)dr

=
(

ω(k)

c

)2 ∫ ∞

−∞
En∗


 (r) · �ε(r)E(r)dr. (C7)

Inserting Eq. (C4) into Eq. (C7) and using the orthonormality
of the cavity wave functions,∫ ∞

−∞
ε
(r)En∗


 (r) · Em

(r)dr = δmn, (C8)

we arrive at an eigenvalue equation that determines the coef-
ficients bm(k) and the Bloch frequencies [ω(k)/c]2:[(


n

c

)2

−
(

ω(k)

c

)2
]

bn

= −
[(


n

c

)2

−
(

ω(k)

c

)2
] ∑

m

×
⎛
⎝∑

R �=0

∫ ∞

−∞
En∗


 (r) · ε
(r)Em

(r − R)eik·Rdr

⎞
⎠bm

+
(

ω(k)

c

)2 ∑
m

(∫ ∞

−∞
En∗


 (r) · �ε(r)Em

(r)dr

)
bm

+
(

ω(k)

c

)2 ∑
m

×
⎛
⎝∑

R �=0

∫ ∞

−∞
En∗


 (r) · �ε(r)Em

(r − R)eik·Rdr

⎞
⎠bm.

(C9)

The first term on the right of Eq. (C9) contains integrals of
the form ∫ ∞

−∞
dr En∗


 (r) · ε
(r)Em

(r − R). (C10)

We interpret our assumption of well-localized cavity modes to
mean that Eq. (C10) is small compared to unity. We assume

that the integrals in the third term on the right of Eq. (C9) are
small, since they also contain the product of two cavity wave
functions centered at different sites. Finally, we assume that
the second term on the right of Eq. (C9) is small because we
expect the cavity wave functions to become small at distances
large enough for the periodic dielectric function to deviate
appreciably from the cavity one.

Consequently, the right-hand side of (C10) (and therefore
{(
n/c)2 − [ω(k)/c]2}bn) is always small. This is possible if
(
n/c)2 − [ω(k)/c]2 is small whenever bn is not (and vice
versa). Thus [ω(k)/c]2 must be close to a cavity mode, say
(
0/c)2, and all the bn except those going with that mode and
modes degenerate with (or close to) it in frequency must be
small: (ω

c

)2
(k) ≈

(

0

c

)2

, bn ≈ 0 unless

(

n

c

)2

≈
(


0

c

)2

. (C11)

We can exploit Eq. (C11) to estimate the right-hand side
of (C9) by letting the sum over m run only through those
modes with frequencies either degenerate with or very close
to (
0/c)2. If the cavity mode 0 is nondegenerate, i.e., an
s-orbital-like mode, then in this approximation (C9) reduces
to a single equation giving an explicit expression for the
frequency of the band arising from this s-orbital-like mode
(generally referred to as an “s-orbital-like band”)(

ω(k)

c

)2

=
(


s

c

)2

− βk + ∑
γk (R)eik·R

1 + ∑
α(R)eik·R , (C12)

where (
s/c)2 is the frequency of the cavity s-orbital-like
mode, and

βk ≡
(

ω(k)

c

)2 ∫ ∞

−∞
dr E∗


(r) · �ε(r)E
(r), (C13)

α(R) ≡
∫ ∞

−∞
dr E∗


(r) · ε
(r)E
(r − R), (C14)

γk (R) ≡
(

ω(k)

c

)2 ∫ ∞

−∞
dr E
(r) · �ε(r)E
(r − R).

(C15)

Here the γk (R) coefficient is the optical analog of the hopping
integral known from the electronic case. In comparison to
the tight-binding dispersion relation for Schrödinger waves
[see Ref. [18], Eq. (10.15)], we note a remarkable difference,
namely that the integral here is multiplied with the frequency.
We infer that a physical reason for this difference is that elec-
tronic potentials can be arbitrarily high or low compared to
kinetic energy, whereas the optical analog “potential for light”
is always below the photon energy level; see for illustration
the second figure of Ref. [75].

We neglect the terms in α in the denominator of Eq. (C12),
since they give only small corrections to the numerator. An-
other simplification consists of assuming that only nearest-
neighbor separations give appreciable overlap integrals.
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Combining these assumptions, we simplify Eq. (C12) to(
ω(k)

c

)2

=
(


s

c

)2

− βk −
∑
n.n.

γk (R)eik·R, (C16)

where the sum runs only over those R in the Bravais lattice
that connect the origin to its nearest neighbors. An explicit
expression for the frequency is(

ω(k)

c

)2

=
(


s

c

)2 1

1 + β + ∑
n.n. κ (R)eik·R , (C17)

with

β ≡
∫ ∞

−∞
dr E∗


(r) · �ε(r)E
(r), (C18)

κ (R) ≡
∫ ∞

−∞
dr E∗


(r) · �ε(r)E
(r − R). (C19)

The κ (R) coefficients are referred to as the coupling coef-
ficients of light in our paper, and they are nondimensional.
Since we verified that E
(r) is small at distances exceeding
the lattice parameter of the superlattice, the coefficient in
Eq. (C18) is negligible. To obtain an expression for the
frequency rather than the frequency squared, we take the
square root, and we apply the first-order Taylor approximation
(1 + x)−

1
2 = 1 − x/2 + O(|x|2), which leads to the dispersion

relation

ω(k)

c
= 
s

c

(
1 − β

2
− 1

2

∑
n.n.

κ (R)eik·R
)

. (C20)

The coupling coefficients are extracted from the disper-
sion by means of a least-squares fit of the right-hand side
of Eq. (C20) to the dispersion throughout the whole first
Brillouin zone. We represent the first Brillouin zone by a grid
of 12 × 12 × 12 cubes. We fit over the k vectors in the middle
of the cubes. The results of the tight-binding calculations are
discussed in Sec. III. We note that for all nonzero coupling
coefficients, the imaginary part is of the order of at most 10−6,
which is 100× to 1000× less than the real part (of the order
of ∼ 10−4 for m = 3, 5 and ∼10−3 for m = 4). Therefore,

we are confident that the coupling coefficients are physically
significant. As expected, β is negligibly small, with a real part
of the order of ∼10−10.

APPENDIX D: COUPLING COEFFICIENTS
IN THE y DIRECTION

The coupling coefficients in the +y and −y directions are
equal by reciprocity, which we derive in the following. We
start with the definition of the coupling coefficient

κ (R) =
∫

dr E∗

(r) · �ε(r)E
(r − R).

By definition,

=
∫

dr E∗

(r) · [ε(r) − ε
(r)]E
(r − R).

Translating the coordinate system

=
∫

dr E∗

(r + R) · [ε(r + R) − ε
(r + R)]E
(r).

By Maxwell’s equations for the individual cavity,

=
∫

dr E∗

(r) · ε(r)E
(r + R)

− 1(

s
c

)2

∫
dr ∇ × ∇ × E∗


(r + R) · E
(r).

Performing integration by parts

=
∫

dr E∗

(r) · ε(r)E
(r + R)

− 1(

s
c

)2

∫
dr E∗


(r + R) · ∇ × ∇ × E
(r)dr.

By Maxwell’s equations for the individual cavity,

=
∫

dr E∗

(r) · ε(r)E
(r + R)

− dr E∗

(r)ε
(r)E
(r + R)

= κ (−R). (D1)
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