31 research outputs found

    Implicit a posteriori error estimates for the Maxwell equations

    Get PDF
    An implicit a posteriori error estimation technique is presented and analyzed for the numerical solution of the time-harmonic Maxwell equations using NƩdƩlec edge elements. For this purpose we define a weak formulation for the error on each element and provide an efficient and accurate numerical solution technique to solve the error equations locally. We investigate the well-posedness of the error equations and also consider the related eigenvalue problem for cubic elements. Numerical results for both smooth and non-smooth problems, including a problem with reentrant corners, show that an accurate prediction is obtained for the local error, and in particular the error distribution, which provides essential information to control an adaptation process. The error estimation technique is also compared with existing methods and provides significantly sharper estimates for a number of reported test cases. \u

    A space-time discontinuous Galerkin finite-element discretization of the Euler equations using entropy variables

    Get PDF
    A method to numerically solve the Euler equations for fluids with general equations of state is presented. It is based on a formulation solving the conservation equations for either pressure primitive variables or entropy variables, instead of the commonly used conservation variables. We use a space-time discontinuous Galerkin finite-element discretization, which yields a highly local, potentially higher-order scheme. The algorithm is applied to test cases for compressible fluids to demonstrate its capabilities and the performance of the different variable sets

    Hamiltonian Finite Element Discretization for Nonlinear Free Surface Water Waves

    Get PDF
    A novel finite element discretization for nonlinear potential flow water waves is presented. Starting from Lukeā€™s Lagrangian formulation we prove that an appropriate finite element discretization preserves the Hamiltonian structure of the potential flow water wave equations, even on general time-dependent, deforming and unstructured meshes. For the time-integration we use a modified Stƶrmerā€“Verlet method, since the Hamiltonian system is non-autonomous due to boundary surfaces with a prescribed motion, such as a wave maker. This results in a stable and accurate numerical discretization, even for large amplitude nonlinear water waves. The numerical algorithm is tested on various wave problems, including a comparison with experiments containing wave interactions resulting in a large amplitude splash

    A Space-Time Finite Element Method for Neural Field Equations with Transmission Delays

    Get PDF
    We present and analyze a new space-time nite element method for the solution of neural eld equations with transmission delays. The numerical treatment of these systems is rare in the literature and currently has several restrictions on the spatial domain and the functionsinvolved, such as connectivity and delay functions. The use of a space-time discretization, with basis functions that are discontinuous in time and continuous in space (dGcG-FEM), is a natural way to deal with space-dependent delays, which is important for many neural eld applications. In this paper we provide a detailed description of a space-time dGcG-FEM algorithm for neural delay equations, including an a priori error analysis. We demonstrate the application of the dGcG-FEM algorithm on several neural eld models, including problems with an inhomogeneous kernel

    A multi-scale formulation for compressible turbulent flows suitable for general variational discretization techniques

    Get PDF
    Based on the recently introduced variational multi-scale (VMS) approach to large-eddy simulation (LES) as introduced in [T.J.R. Hughes, L. Mazzei, K.E. Jansen, Large eddy simulation and the variational multiscale method, Comput. Visual. Sci. 3 (2001) 47ā€“59; S.S. Collis, Monitoring unresolved scales in multiscale turbulence modeling, Phys. Fluids 13 (6) (2001) 1800ā€“1806], we present a VMS formulation which can be used in the simulation of compressible flows. Special attention is given to obtain a VMS formulation which is suitable for complex flow domains and general variational discretization techniques. A generalization of the Favre-averaging procedure is introduced such that the formulation resembles the Favre-filtered Navierā€“Stokes equations traditionally used in LES of compressible flow, and no explicit subgrid terms arise in the continuity equation. Also, we show that with the use of discretization methods other than Fourier-spectral methods the VMS-projection no longer commutes with differentiation. This results in additional subgrid scale terms which resemble the commutator error as encountered in the traditional filtering approach to LES
    corecore