127 research outputs found

    Tidewater calving

    Get PDF
    This is the publisher's version, copyright by the International Glaciological Society.Data from Columbia Glacier are used to identify processes that control calving from a temperate tidewater glacier and to re-evaluate models that have been proposed to describe iceberg calving. Since 1981, Columbia Glacier has been retreating rapidly, with an almost seven-fold increase in calving rate from the mid- 1970s to 1993. At the same time, the speed of the glacier increased almost as much, so that the actual rate of retreat increased more slowly. According to the commonly accepted model, the calving rate is linearly related to the water depth at the terminus, with retreat of the glacier snout into deeper water, leading to larger calving rates and accelerated retreat. The Columbia Glacier data show that the calving rate is not simply linked to observed quantities such as water depth or stretching rate near the terminus. During the retreat, the thickness at the terminus appears to be linearly correlated with the water depth; at the terminus, the thickness in excess of flotation remained at about 50 m. This suggests that retreat may be initiated when the terminal thickness becomes too small, with the rate of retreat controlled by the rate at which the snout is thinning and by the basal slope. The implication is that the rapid retreat of Columbia Glacier (and other comparable tidewater glaciers) is not the result of an increase in calving as the glacier retreated into deeper water. Instead, the retreat was initiated and maintained by thinning of the glacier. For Columbia Glacier, the continued thinning is probably associated with the increase in glacier speed and retreat may be expected to continue as long as these large speeds are maintained. It is not clear what mechanism may be responsible for the speed-up but the most likely candidate is a change in basal conditions or subglacial drainage. Consequently, the behavior of tidewater glaciers may be controlled by processes acting at the glacier bed rather than by what happens at the glacier terminus

    Fracture propagation as means of rapidly transferring surface meltwater to the base of glaciers

    Get PDF
    This is the published version, also available here: http://dx.doi.org/10.1029/2006GL028385.1] Propagation of water-filled crevasses through glaciers is investigated based on the linear elastic fracture mechanics approach. A crevasse will penetrate to the depth where the stress intensity factor at the crevasse tip equals the fracture toughness of glacier ice. A crevasse subjected to inflow of water will continue to propagate downward with the propagation speed controlled primarily by the rate of water injection. While the far-field tensile stress and fracture toughness determine where crevasses can form, once initiated, the rate of water-driven crevasse propagation is nearly independent of these two parameters. Thus, rapid transfer of surface meltwater to the bed of a cold glacier requires abundant ponding at the surface to initiate and sustain full thickness fracturing before refreezing occurs

    Greenland Ice Sheet response to external forcing

    Get PDF
    This is the published version, also available here: http://dx.doi.org/10.1029/2001JD900032.Kinematic wave modeling is used to evaluate possible responses of the Greenland ice sheet to changes in its surface mass balance. In the approach followed here the reference state is defined based on measured velocity and discharge flux along the central flow line of Petermann Glacier in the northwest, and perturbations on this state are considered. The results indicate that significant rates of thickness change can occur immediately after the prescribed change in surface mass balance but adjustments in flow rapidly diminish these rates to a few centimeters per year at most. Full adjustment of the ice sheet requires times of the order of 1000 years. The instability mechanism known as the Jakobshavn Effect is discussed and, based on observational evidence as well as results from prior modeling studies, it is concluded that this is an unlikely mechanism for destabilizing major drainage basins of the Greenland ice sheet

    Interannual variability in net accumulation on the Greenland Ice Sheet: Observations and implications for mass balance measurements

    Get PDF
    This is the published version, also available here: http://dx.doi.org/10.1029/1998JD200082.Nine 24-year accumulation records from the Summit region in central Greenland are analyzed to separate the effects of spatial noise and interannual fluctuations on the variability in each core. The study shows that both processes are equally important, with standard deviations of 25 mm water equivalent per year and 24 mm water equivalent per year, respectively. A comparison with estimates of surface roughness based on high-resolution laser altimetry of the surface indicates that in the studied region the spatial noise can be reliably estimated from surface roughness. The response of the ice-sheet surface to the interannual fluctuations can be estimated using a simple zero-dimensional ice-sheet response model. For the Summit region of central Greenland, a change in surface elevation of ∼20 mm water equivalent per year measured over a 5-year period, can be attributed with 95% confidence to a trend in climate. This probability decreases rapidly as the observation period is shortened. For intervals greater than ∼5 year, the probability depends only weakly on the measurement interval. This suggests an optimum spacing of ∼5 years between repeat elevation measurements

    Spectral Characteristics of Greenland Lichens

    Get PDF
    Spectral reflectance measurements conducted during two field campaigns in west Greenland, and in the laboratory using samples collected during those campaigns, are discussed to evaluate the spectral signature of lichens. Given the diversity in lichen species, colors, and appearance — ranging from crust-like (crustose) to almost like mini shrubs (fructicose) — it is not surprising that no single signature was found. Some of the brighter fructicose lichens have reflectance characteristics very similar to those of green vegetation, with a pronounced rise in reflectivity around 750 nm. However, the most abundant lichen species covering rocks in the ice-marginal zone of west Greenland are dark grey to black crustose and foliose ephilithic (rock-growing) lichens and the shape of the reflectance spectrum for these lichens is generally very different from that of other surface types and landcovers, with near-zero reflectance at visible wavelengths, and a maximum around 1 600 nm. This characteristic allows rock-covered lichen to be identified on multispectral satellite imagery.L’évaluation de la signature spectrale des lichens est effectuée à partir de mesures prises en laboratoire et sur le terrain, au Groenland occidental. Aucune signature spécifique ne peut être identifiée, en raison de la diversité des espèces quant à leur couleur et à leur port, allant de la croûte à l’arbuste nain. Les lichens arbustifs les plus brillants montrent une signature spectrale semblable à celle des plantes vertes, avec un pic très prononcé autour de 750 nm. Toutefois, les lichens les plus abondants sur les roches à proximité des glaces sont gris foncés à noirs et du type crustacé ou foliacé; leur spectre de réflectance montre une allure très différente de celle des autres types de surface et de couverture, et se rapproche de zéro dans le spectre visible avec un pic autour de 1 600 nm. Cette caractéristique permet l’identification des roches recouvertes de lichens par l’imagerie satellitaire multispectrale

    Patterns of calculated basal drag on ice streams B and C, Antarctica

    Get PDF
    This is the published version.Patterns of strain rate and slope on the ice streams are unusual. They cannot be accounted for in the usual way as due to standing waves in ice flow over a basal obstruction to flow (such as a sticky spot) . The features are studied using the force-budget technique. The conventional flow law is used, together with measurements of surface strain rate and shape of the glacier, to compute basal drag. The results for Ice Stream C are as expected, in that the drag varies from site to site but is directed inland, restraining the flow. The calculated drag at the base of Ice Stream B, on the other hand, is in places such that it acts to propel the glacier forward. This result is untenable. Either the conventional flow law is not applicable to Ice Stream B or there are large spatial variations in ice stiffness, perhaps associated with foliation, or both

    The role of lateral drag in the dynamics of Ice Stream B, Antarctica

    Get PDF
    The partitioning of resistive force between the bed and sides of Ice Stream B, Antarctica , is obtained for three large areas that have bee n measured using repeat aerial photogrammetry. Problems associated with data errors and local variations in ice strength and velocity are reduced by considering the a really ave raged budget of forces for each photo block. Results indicate that the bed under Ice Stream B must be very weak and unable to provide much res instance. Mechanical l control on this ice stream emanates almost entirely from the lateral margins

    Flow laws for glacier ice: comparison of numerical predictions and field measurements

    Get PDF
    This is the published version, also available here: http://dx.doi.org/10.3189/002214390793701372.Ice flow along the 20 km long strain network up-stream of the Dye 3 bore hole in Greenland is studied in detail. By solving the force—balance equations and using selected flow laws, stresses and strain-rates are calculated throughout the section of the ice sheet. The validity of the results is evaluated by comparison with the velocity profile derived from bore-hole-tilting measurements, and with observed surface strain-rates. A number of constitutive relations are tried and most predict a velocity profile at the bore-hole site that is in good agreement with that observed, if appropriate enhancement factors are used. However, there are major discrepancies between modeled and measured surface strain-rates. Use of Nye's generalization of Glen's flow law, or an anisotropic constitutive relation, requires unrealistically large along-flow variations in the enhancement factor. Inclusion of normal stress effects can lead to much better agreement, but it is possible that other processes, such as dynamic recrystallization or primary creep, should be included in the constitutive relation of polar ice

    Force Budget: II. Application to Two-Dimensional Flow Along Byrd Station Strain Network, Antarctica

    Get PDF
    This is the published version, also available here: http://dx.doi.org/10.3189/002214389793701455.Resistive stresses and velocities at depth are calculated along the Byrd Station Strain Network, Antarctica, using field data. There are found to be large longitudinal variations in basal drag and this result is little affected by errors in the input data or by uncertainties in the constitutive relation for ice. Basal drag varies by a factor of about 2 along the strain network, and is usually equal to the driving stress to within 10–20%. Sites of high drag are not always correlated with basal topographic highs, indicating that some process such as basal water drainage is involved in controlling the friction at the bed. Basal sliding velocities are very sensitive to errors in measured surface velocities and the rate factor in Glen's flow law. As a result, calculated sliding velocities are much less reliable than deep stresses, and need to be interpreted with caution

    Determination of a flow center on an ice cap

    Get PDF
    This is the published version.A method for identifying the center of ice flow is developed and applied using results from surveys of a strain grid near the summit of Dunde Ice Cap (central China). Strain rates are used to compute stresses. These are used with a consideration of the balance of forces to compute basal friction. The flow center at the bed occurs where this friction changes sign. For Dunde Ice Cap, the basal flow center nearly underlies the summit
    • …
    corecore