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[1] Propagation of water-filled crevasses through glaciers
is investigated based on the linear elastic fracture mechanics
approach. A crevasse will penetrate to the depth where the
stress intensity factor at the crevasse tip equals the fracture
toughness of glacier ice. A crevasse subjected to inflow of
water will continue to propagate downward with the
propagation speed controlled primarily by the rate of
water injection. While the far-field tensile stress and
fracture toughness determine where crevasses can form,
once initiated, the rate of water-driven crevasse propagation
is nearly independent of these two parameters. Thus, rapid
transfer of surface meltwater to the bed of a cold glacier
requires abundant ponding at the surface to initiate and
sustain full thickness fracturing before refreezing occurs.
Citation: van der Veen, C. J. (2007), Fracture propagation as

means of rapidly transferring surface meltwater to the base of

glaciers, Geophys. Res. Lett., 34, L01501, doi:10.1029/

2006GL028385.

1. Introduction

[2] Zwally et al. [2002] observed increased speeds at a
location in the equilibrium zone of the west-central
Greenland Ice Sheet following periods of summer melting.
Similar speed-up events have been observed on tidewater
glaciers (e.g. Columbia Glacier, Alaska [Meier et al., 1994])
as well as on mountain glaciers [e.g., Iken et al., 1983;
Iken and Bindschadler, 1986], but the observations of
Zwally et al. [2002] are somewhat surprising, however.
While increased discharge following summer melt has been
observed on Greenland outlet glaciers [Joughin et al., 1996;
Mohr et al., 1998], previous velocity measurements inland
of Jakobshavn Isbræ indicated a lack of seasonal variation
[Echelmeyer and Harrison, 1990]. Further, at the location of
the measurements reported by Zwally et al. [2002] the ice
thickness is �1 km and at sub-freezing temperatures over
most of the thickness. Thus, a drainage connection between
the surface and the glacier bed must be established suffi-
ciently rapid to prevent meltwater from refreezing at depth.
Usual mechanisms by which drainage conduits develop
[Röthlisberger, 1972; Shreve, 1972] are likely to be too
slow to satisfy this requirement and propagation of water-
filled fractures appears to be the only viable possibility.
[3] Observations on John Evans Glacier, a predominantly

cold valley glacier located on the east coast of Ellesmere
Island, Arctic Canada, suggest that hydrologically-driven
propagation of fractures may be the mechanism by which a

drainage connection between the surface and the subglacial
drainage system is established [Boon and Sharp, 2003].
Water levels measured in a supraglacial stream entering the
glacier via a crevasse indicated that multiple, relatively
abrupt, drainage events occurred over a period of about
one week during which the crevasse was water-filled or
overfilled. During these events, drainage was not sustained,
likely because of refreezing of surface meltwater penetrating
the initial fractures exceeded water inflow. However, after
eight such events the surface pond drained completely
within one hour, suggesting a passage through the entire
150 m ice thickness had been established. Boon and Sharp
[2003] suggest that warming of the englacial ice due to
refreezing during preceding drainage events allowed the
establishment of a permanent surface-to-bed connection,
developed through fracturing driven by a large volume of
ponded surface water. A survey of 48 holes drilled into
Storglaciaren, Sweden, indicated that englacial drainage is
dominantly accommodated by fracture-derived drainage
passages, rather than through conduits [Fountain et al.,
2005]. These authors argue that conduits controlled by
the balance between inward creep of ice and outward
melting resulting from frictional heating from moving water
[Röthlisberger, 1972; Shreve, 1972] may be special cases of
the englacial flow system, and that the seasonal development
of the drainage system may be controlled by fracturing, with
surface crevasses providing access for surface meltwater.
[4] Theoretical analyses based on fracture mechanics

show that water-filled crevasses can penetrate the full ice
thickness of glaciers subject to tension [Weertman, 1973;
van der Veen, 1998]. Because the density of water is slightly
greater than that of ice, provided the crevasse remains
water-filled, the weight of the water can overcome the
lithostatic stress in the ice, thus allowing the crevasse to
reach the glacier bed. This water-driven fracturing has been
proposed as the mechanism responsible for the rapid col-
lapse of ice shelves in the Antarctic Peninsula [Scambos et
al., 2000]. However, the rate at which fractures propagate
through glaciers has received little attention so far. Alley et
al. [2005] investigate crack propagation using the model
developed by Rubin [1995] for propagation of magma-filled
fractures through brittle crustal rocks. They conclude that
downward fracture propagation through cold ice requires a
large inflow of water to maintain water pressure and offset
water loss from refreezing. Given the number of assump-
tions involved, Alley et al. [2005] do not place great faith in
the numerical results and, consequently, it is not obvious
from their study how rapidly fractures propagate downward.
[5] Growth of a water-filled crevasse may be modeled

using theories developed for hydraulic fractures. Since its
development during the last half of the 1940s, hydraulic
fracturing has been one of the primary engineering tools
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for improving the productivity of oil wells [Smith and
Shlyapobersky, 2000]. Starting with the pioneering work
of Sneddon [1946] and Sneddon and Elliot [1946], an
extensive body of theoretical knowledge has developed
(for recent reviews, see: Ben-Naceur [1989], Valkó and
Economides [1995], and Mack et al. [2000]). In essence,
the fluid pressure within the fracture is related to the fluid
flow rate and size or shape of the fracture (Poiseuille’s
equation), while crack propagation is evaluated based on
linear elastic fracture mechanics, subject to the condition
that inflow of water equals crack volume growth. Where
refreezing takes place (as in magma intrusions or meltwater
penetration into cold glaciers), conservation of energy needs
to be considered as well. The results are often complex in-
volving many assumptions and poorly constrained material
parameters, rendering predictions rather uncertain. Given
these reservations, an heuristic approach based on the frac-
ture toughness criterion is adopted in this study to investi-
gate the effect of water inflow on crevasse propagation.

2. Model Formulation

[6] The approach followed in this study to investigate
fracture propagation is based on linear elastic fracture
mechanics (LEFM) in which the stress intensity factor is
used to describe the elastic stresses near the tip of the
fracture. This factor provides a measure for the depth to
which crevasses will penetrate into the ice; this depth being
where the stress intensity factor equals the fracture tough-
ness of ice. Only Mode I opening is considered here, with
the crevasse propagating vertically downward and perpen-
dicular to the applied tensile stress (Figure 1). Crevasse
opening is due to a far field tensile normal stress acting
perpendicular to the plane of the crevasse, while crevasse
closure is caused by the weight of the ice. Following
van der Veen [1998], these effects are separated by equating
the normal stress associated with crevasse opening to the
resistive stress, Rxx, defined as the full or total stress minus
the weight-induced lithostatic stress [van der Veen and
Whillans, 1989]. This resistive stress is associated with
glacier flow and analogous to the tectonic stress commonly
used in geodynamics [Turcotte and Schubert, 2002, p. 77].
For ease of calculation, this resistive stress is taken inde-
pendent of depth. Crevasse closure results from the weight
of the ice and the corresponding closing stress is the
lithostatic stress. If the crevasse is partially filled with water,
the water pressure compensates all or part of the lithostatic
stress in the ice, thus allowing the crevasse to penetrate
deeper than when water is absent.
[7] van der Veen [1998] provides expressions for the

stress intensity factors associated with the resistive tensile
stress, the lithostatic stress in the ice, and water pressure.
Because single-mode fracturing is considered here, the net
stress intensity factor is given by the sum of these three
contributions [Broek, 1986, p. 84]. To abbreviate the calcu-
lations presented here, the simpler expression applied first
by Smith [1976] to study crevasse penetration is used here
rather than the complete expression given by van der Veen
[1998]. That is, the net stress intensity factor is estimated
from

KI ¼ 1:12Rxx

ffiffiffiffiffiffi
�d

p
� 0:683�igd

1:5 þ 0:683�wgb
1:5 ð1Þ

The first term on the right-hand side corresponds to the
stress intensity factor associated with a tensile stress; the
second term corresponds to the lithostatic stress in ice with
density ri, while the third term corresponds to the water
pressure effect. The second term is negative because the
weight of the ice tends to close the crevasse. By setting the
stress intensity factor, KI, equal to the fracture toughness of
ice, KIC, the crevasse depth, d, can be calculated for given
tensile stress, Rxx, and water height, b, in the crevasse.
[8] Compared to the more complete solution given by

van der Veen [1998], equation (1) involves several simpli-
fying assumptions. First, the ice is assumed to be a semi-
infinite plane or, equivalently, the ratio of crevasse depth to
ice thickness is assumed to be small. For crevasses that
penetrate a significant fraction of the ice thickness, this
assumption severely underestimates the first term on the
right-hand side [cf. van der Veen, 1998]. Second, the ice
density is taken constant so that the compressive overburden
stress increases linearly with depth below the surface.
Accounting for the lower-density firn layer reduces this
overburden stress and thus allows deeper penetration
[van der Veen, 1998]. However, because this study considers
penetration of water-filled crevasses in regions with exten-
sive surface melting, the firn layer likely is absent and a
constant density may be assumed. Third, in calculating the
stress intensity factor associated with water pressure, the
crevasse depth above the water level is neglected which
may greatly underestimate the corresponding stress intensity
factor (third term on the right-hand side of equation (1))
[van der Veen, 1998]. However, for water-filled crevasses to
penetrate deep into the ice, the water level must remain near
the ice surface (that is, b � d), so this simplification is not
overly restrictive. Lastly, equation (1) applies to single
crevasses only. In a field of closely-spaced crevasses, the
tensile stress, Rxx, is reduced due to the blunting effect of
neighboring crevasses, thus reducing the first term on the
right-hand side of equation (1) [van der Veen, 1998].
However, for water-filled crevasses extending to a signifi-
cant depth, this term is small compared to the other two

Figure 1. Model geometry. A crevasse of depth d extends
vertically downward into a glacier, and is filled with water
to a level b above the bottom of the crevasse. The far-field
tensile stress, Rxx, is assumed constant with depth.
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terms. Thus, ignoring crevasse interactions is not a severe
limitation of the present model.
[9] To investigate crevasse penetration, we start with a

water-free crevasse (b = 0) and solve equation (1) for
crevasse depth for prescribed tensile stress, Rxx, and ice
fracture toughness, KIC. Next, the crevasse is filled with
water at a constant rate, Q, such that the water level
increases linearly with time:

b ¼ Q t ð2Þ

Other filling rates could be adopted, accounting for the
changing width and shape of the fracture as it penetrates
deeper, but this has little effect on the essential properties of
the model. As the crevasse fills with water, the stress
intensity factor increases, allowing the crevasse to penetrate
to a greater depth which can be found by solving equation (1)
for KI = KIC at select times (every 10 hr). Note that while
the height of the water in the crevasse increases with time,
so does the crevasse depth and in all calculations, the water
level remained 10–20 m below the ice surface.

3. Results

[10] Pertinent results are summarized in Figure 2 and
indicate that the single most important factor controlling
downward crevasse propagation is the filling rate, Q. Within
a few percent, the penetration velocity equals the rate at
which the crevasse is filled, independent of the value of the
far field tensile stress, Rxx (compare light and heavy curves)
and of the fracture toughness. Results shown in Figure 2
refer to solutions obtained for a fracture toughness KIC =
100 kPa m1/2, but calculations using KIC = 400 kPa m1/2

yielded essentially the same results.
[11] The insensitivity of the propagation speed to the

value of the tensile stress and of the fracture toughness can
be understood by considering equation (1) for the net stress
intensity factor. The three terms on the right-hand side

are shown in Figure 3, using Rxx = 300 kPa and a filling
rate Q = 1 m/hr. As the fracture grows, the second and third
terms become dominant and, in good approximation,

d ¼ �w
�i

� �2
3

Q t ð3Þ

Thus, the propagation speed is essentially determined by the
rate at which water is supplied to the crevasse. The tensile
stress Rxx and fracture toughness are important to allow
small fractures to develop into crevasses, but their
respective values have little effect once water-driven
propagation has started.

4. Applicability of the LEFM Approach

[12] Valkó and Economides [1995, p. 243] argue that the
LEFM approach becomes more and more unrealistic as the
fracture propagates and yields results that contradict com-
mon sense. To bolster their argument, they present the
‘‘Injection Rate Dependence Paradox.’’ For the geometry
under consideration, the stress intensity factor is propor-
tional to the net pressure in the fracture, multiplied with the
square root of the fracture length. That is,

KI � Pn
ffiffiffi
d

p
ð4Þ

[e.g., Broek, 1986, p. 10]. During fracture propagation, KI

remains equal to the fracture toughness, thus the net

Figure 2. Growth of a water-filled crevasse for different
values of the filling rate, Q. Heavy curves correspond to
calculations with a prescribed tensile stress of 300 kPa and
light curves to a tensile stress of 75 kPa.

Figure 3. Evolution of the three contributions to the net
stress intensity factor for a filling rate Q = 1 m/hr and a
tensile stress Rxx = 300 kPa. KI

(1) represents the stress
intensity factor corresponding to the tensile stress (first term
on the right-hand side of equation (1)); KI

(2) represent the
effect of weight-induced lithostatic stress causing the
crevasse to close (note that this corresponds to the second
term on the right-hand side of equation (1) without the

minus sign); KI
(3) corresponds to crevasse opening due to

water in the crevasse (third term on the right-hand side of
equation (1)). During crevasse propagation, the net stress
intensity factor equals the fracture toughness for glacier ice,
KIC = 100 kPa m1/2.
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pressure must decrease as the fracture length increases.
Because the propagation speed is proportional to the fluid
injection rate, this implies that the pressure is inversely
proportional to the injection rate. The difficulty with this
argument is that equation (4) applies to a fracture with the
same pressure, Pn, along its length. However, in the case
of water-filled crevasses in glacier ice, both the lithostatic
stress and the weight of the water in the crevasse increase
with depth and equation (1) should be used to estimate the
stress intensity factor. As the crevasse grows deeper, the
first term on the right-hand side of this expression
increases because the far-field tensile stress, Rxx, is kept
constant. This increase, combined with the increase in
water pressure (third term on the right-hand side) is
countered by the increased lithostatic stress (second term)
such that the stress intensity factor remains equal to the
fracture toughness.
[13] By adopting the fracture toughness criterion, dissi-

pation of energy in the form of heat is neglected. How-
ever, as the fracture grows, a zone of microcracks develops
at the fracture tip and energy consumed by this process
becomes increasingly important and may slow fracture
propagation. Thus, the present approach could over-
estimate the propagation speed [Valkó and Economides,
1995, p. 244]. On the other hand, the current model does
not account for the finite thickness of the ice which greatly
underestimates the first term on the right-hand side of
equation (1) for crevasses deeper than about one third of
the ice thickness [van der Veen, 1998]. Incorporating this
effect would increase the propagation speed of deeper
crevasses.
[14] Other modifications to the LEFM approach have

been suggested, including introducing a fluid lag region to
account for the unwetted zone near the crack tip, allowing
for dilatancy just behind the fracture tip, and adopting the
cumulative damage approach to model near-tip behavior
[e.g., Mack et al., 2000]. Without adequate observations
against which refined models can be tested, it remains
doubtful whether a more sophisticated model will greatly
improve basic understanding of fracture propagation in
glaciers.
[15] A concern with the LEFM approach to investigate

fracturing in glaciers is that ice is a non-linear viscous
material subject to stress-induced creep. Provided the
creep-dominated process zone at the fracture tip is small
relative to the fracture length, LEFM provides a valid
approach [Broek, 1986, p. 14]. Riedel and Rice [1980]
developed a model to estimate the size of the process zone
for stationary fractures embedded within an isotropic non-
linear viscous material. For a suddenly applied loading,
they find that the size of the process zone increases
linearly with time. Applying their results to glacier ice
with a yield strength of 150 kPa, and using a rate factor
corresponding to ice near the pressure-melting point,
predicts a process zone of a few cm radius 1000 hr
after initial loading. Based on numerical calculations,
Nanthikesan and Shyam Sunder [1995a, 1995b], argued
that transient creep may increase the size of the plastic
zone by an order of magnitude compared to the analysis of
Riedel and Rice [1980]. This would imply a plastic zone
with a radius of a few meters, which is small compared to

the penetration depth of water-filled crevasses. Thus, the
LEFM approach is applicable to fracturing on glaciers.

5. Discussion

[16] The results presented here are based on a LEFM
model in which crevasse propagation is dictated by the
stress intensity factor as compared to the fracture toughness
of ice. No rate-determining processes, such as energy
concentration or release at the crevasse tip are considered
as in more sophisticated models. Nevertheless, the main
result, that the rate of crevasse penetration is dominantly
controlled by the rate at which water is supplied to the
crevasse, is broadly similar to results from related studies
and field observations.
[17] An important criticism of the present model could

be that refreezing of meltwater is not incorporated, espe-
cially considering that the initial question was how
surface meltwater can penetrate the full ice thickness of
a polar ice sheet with subfreezing temperatures without
refreezing before reaching the glacier base. To address
this criticism, compare the rate of meltwater freezing and
the rate of crevasse propagation. For meltwater at or near
the melting temperature, Tm, in contact with ice at initial
temperature To, the thickness of the layer frozen on during
a time t, is approximately given by [Rubin, 1995; Alley et
al., 2005]

w tð Þ ¼ 2
C Tm � Toð Þffiffiffi

�
p

L

ffiffiffiffiffiffi
k t

p
ð5Þ

where C = 2093 J kg�1 K�1 is the specific heat, k = 1.18 	
10�6 m2 s�1 is the thermal diffusivity, and L = 3.3 	
105 J kg�1 is the latent heat of ice. For a temperature
difference, Tm � To = 20 K, the thickness of accreted ice is
�30 cm after 1000 hr. For freezing occurring at both
vertical faces of the crevasse, the decrease in crevasse width
is �60 cm over this period. Similarly, the rate at which
the tip freezes upward is of the same order of magnitude.
Compared to the volume of water that must be supplied to
continue downward propagation of the crevasse, and to the
rate of crevasse propagation, the effects of meltwater freeze
on are small. Further, as water flows into the crevasse,
viscous dissipation will partly compensate for refreezing. Of
course, if the meltwater source is insufficient to cause full
thickness fracturing over periods of several days or so, the
rate of crevasse penetration likely will be too small to
prevent complete freeze up and arrested drainage to the bed.
[18] A crevasse filling rate of 1 m/hr as used in some of

the calculations presented here, might seem to be perhaps
unrealistically high. A simple estimate shows, however, that
this may be achievable under the right circumstances.
Assume a crevasse width of 10 m. Then, per unit length
in the horizontal y-direction (coinciding with the crevasse
orientation at the surface), 10 m2/hr of water needs to be
added to achieve a filling rate, Q = 1 m/hr. During melt
events near the Greenland equilibrium line, surface melt
rates can be on the order of 1 mm/hr (Jason Box, personal
communication, 2006) so that surface meltwater originating
from 5 km on both sides of the crevasse (or 10 km on one
side) must drain into the crevasse. Alternatively, meltwater
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may first collect in a supraglacial lake before draining into
the crevasse. While such conditions may be somewhat
unusual, it does not appear to present insurmountable
difficulties.

6. Conclusions

[19] By adopting concepts based on linear elastic fracture
mechanics, it is shown that water-filled crevasses can
penetrate cold glaciers within periods of hours to days,
depending on ice thickness and availability of ponding
surface water. Once water-driven crevasse propagation is
initiated, the growth rate is determined primarily by the
amount of water flowing into the crevasse, and not by ice-
mechanical properties (fracture toughness) or the magnitude
of the remote tensile stress.

[20] Acknowledgment. This research was supported by the National
Science Foundation under grant 0424589.
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