11 research outputs found
Switching between Plasmonic and Fluorescent Copper Sulfide Nanocrystals
Control over the doping density in copper sulfide nanocrystals is of great importance and determines its use in optoelectronic applications such as NIR optical switches and photovoltaic devices. Here, we demonstrate that we can reversibly control the hole carrier density (varying from >1022 cm-3 to intrinsic) in copper sulfide nanocrystals by electrochemical methods. We can control the type of charge injection, i.e., capacitive charging or ion intercalation, via the choice of the charge compensating cation (e.g., ammonium salts vs Li+). Further, the type of intercalating ion determines whether the charge injection is fully reversible (for Li+) or leads to permanent changes in doping density (for Cu+). Using fully reversible lithium intercalation allows us to switch between thin films of covellite CuS NCs (Eg = 2.0 eV, hole density 1022 cm-3, strong localized surface plasmon resonance) and low-chalcocite CuLiS NCs (Eg = 1.2 eV, intrinsic, no localized surface plasmon resonance), and back. Electrochemical Cu+ ion intercalation leads to a permanent phase transition to intrinsic low-chalcocite Cu2S nanocrystals that display air stable fluorescence, centered around 1050 nm (fwhm â145 meV, PLQY ca. 1.8%), which is the first observation of narrow near-infrared fluorescence for copper sulfide nanocrystals. The dynamic control over the hole doping density and fluorescence of copper sulfide nanocrystals presented in this work and the ability to switch between plasmonic and fluorescent semiconductor nanocrystals might lead to their successful implementation into photovoltaic devices, NIR optical switches and smart windows.ChemE/Opto-electronic MaterialsBN/Technici en Analiste
Tourist Port Havana
To achieve economic growth, the intentions of Cuba are to focus on tourism. The current facilities of the Port of Havana are however in a state of heavy decay and the city is not able to receive tourists travelling by yacht or ferry. For this reason the master plan Tourist Port Havana has been created. The objective is to find a feasible solution in the Havana Bay to receive large numbers of tourists that will visit the city by yacht or ferry. This has resulted in the design of Marina La Coubre, which holds enough berths for 276 yachts of varying sizes, and the design of Havana International Ferry Terminal. With its four berths, the ferry terminal can process ferry lines connecting Havana and for instance Key West, Miami, Tampa, the Bahamas or Cancún. The Ensenada de Atarés in the west of the Bay of Havana is a prime location for both components. The location is close to the historic city centre of Havana, and sufficient area is available on land as well as on water. From a hydrodynamic point of view, the Atarés bay is suitable due to the absence of currents that can be of hindrance to yachts. Locally generated wind waves are however of concern and to ensure the quality of Marina La Coubre a floating breakwater is required. The roads around the port are adapted so the extra generated traffic can be distributed without blocking the through flow. Marina La Coubre is connected to a new roundabout, with a layout that increases the traffic safety. Traffic towards the Havana International Ferry Terminal is rerouted to increase the capacity of the network. Marina La Coubre and Havana International Ferry Terminal are two great assets to the city of Havana and fit neatly in the master plan Tourist Port Havana. The designed components ensure that the port will be able to receive large numbers of tourists visiting the city by yacht or ferry. When evaluating the project, there are however some challenges that arise. The nautical analysis has shown that due to an increase in nautical traffic in the bay, the entrance channel becomes a bottleneck. If the Port of Havana decides to focus on tourism, the attractiveness of the port as a destination for cargo vessels decreases significantly. A decision should be made whether the future of the Port of Havana is as a tourist port or a cargo port. This report makes clear that a combination of both will lead to conflict. The financial and economic evaluations of the project show that without incorporating indirect effects to the local economy, the project has limited viability. Financial support by the government is however justified, as the project generates extra value to the society.Hydraulic Engineering; Transport and PlanningCivil Engineering and Geoscience
On the Stability of Permanent Electrochemical Doping of Quantum Dot, Fullerene, and Conductive Polymer Films in Frozen Electrolytes for Use in Semiconductor Devices
Semiconductor films that allow facile ion transport can be electronically doped via electrochemistry, where the amount of injected charge can be controlled by the potential applied. To apply electrochemical doping to the design of semiconductor devices, the injected charge has to be stabilized to avoid unintentional relaxation back to the intrinsic state. Here, we investigate methods to increase the stability of electrochemically injected charges in thin films of a wide variety of semiconductor materials, namely inorganic semiconductors (ZnO NCs, CdSe NCs, and CdSe/CdS core/shell NCs) and organic semiconductors (P3DT, PCBM, and C60). We show that by charging the semiconductors at elevated temperatures in solvents with melting points above room temperature, the charge stability at room temperature increases greatly, from seconds to days. At reduced temperature (-75 °C when using succinonitrile as electrolyte solvent) the injected charge becomes entirely stable on the time scale of our experiments (up to several days). Other high melting point solvents such as dimethyl sulfone, ethylene carbonate, and poly(ethylene glycol) (PEG) also offer increased charge stability at room temperature. Especially the use of PEG increases the room temperature charge stability by several orders of magnitude compared to using acetonitrile. We discuss how this improvement of the charge stability is related to the immobilization of electrolyte ions and impurities. While the electrolyte ions are immobilized, conductivity measurements show that electrons in the semiconductor films remain mobile. These results highlight the potential of using solidified electrolytes to stabilize injected charges, which is a promising step toward making semiconductor devices based on electrochemically doped semiconductor thin films.ChemE/Chemical EngineeringChemE/Opto-electronic MaterialsBN/Technici en Analiste
Disruption of Functional Brain Networks in Alzheimer’s Disease: What Can We Learn from Graph Spectral Analysis of Resting-State Magnetoencephalography?
In Alzheimer’s disease (AD), structural and functional brain network organization is disturbed. However, many of the present network analysis measures require a priori assumptions and methodological choices that influence outcomes and interpretations. Graph spectral analysis (GSA) is a more direct algebraic method that describes network properties, which might lead to more reliable results. In this study, GSA was applied to magnetoencephalography (MEG) data to explore functional network integrity in AD. Sensor-level resting-state MEG was performed in 18 Alzheimer patients (age 67 – 9, 6 women) and 18 healthy controls (age 66 – 9, 11 women). Weighted, undirected graphs were constructed based on functional connectivity analysis using the Synchronization likelihood, and GSA was performed with a focus on network connectivity, synchronizability, and node centrality. The main outcomes were a global loss of network connectivity and altered synchronizability in most frequency bands. Eigenvector centrality mapping confirmed the hub status of the parietal areas, and demonstrated a low centrality of the left temporal region in the theta band in AD patients that was strongly related to the mini mental state examination (global cognitive function test) score (r = 0.67, p = 0.001). Summarizing, GSA is a theoretically solid approach that is able to detect the disruption of functional network topology in AD. In addition to the previously reported overall connectivity losses and parietal area hub status, impaired network synchronizability and a clinically relevant left temporal centrality loss were found in AD patients. Our findings imply that GSA is valuable for the purpose of studying altered brain network topology and dynamics in AD.Electrical Engineering, Mathematics and Computer Scienc
Spectroelectrochemical Signatures of Surface Trap Passivation on CdTe Nanocrystals
The photoluminescence (PL) quantum yield of semiconductor nanocrystals (NCs) is hampered by in-gap trap states due to dangling orbitals on the surface of the nanocrystals. While crucial for the rational design of nanocrystals, the understanding of the exact origin of trap states remains limited. Here, we treat CdTe nanocrystal films with different metal chloride salts and we study the effect on their optical properties with in situ spectroelectrochemistry, recording both changes in absorption and photoluminescence. For untreated CdTe NC films we observe a strong increase in the PL intensity as the Fermi-level is raised electrochemically and trap states in the bandgap become occupied with electrons. Upon passivation of these in-gap states we observe an increase in the steady state PL and, for the best treatments, we observe that the PL no longer depends on the position of the Fermi level in the band gap, demonstrating the effective removal of trap states. The most effective treatment is obtained for Z-type passivation with CdCl2, for which the steady state PL increased by a factor 40 and the PL intensity became nearly unaffected by the applied potential. X-ray Photoelectron Spectroscopy measurements show that treatment with ZnCl2 mainly leads to X-type passivation with chloride ions, which increased the PL intensity by a factor four and made the PL less susceptible to modulation by applying a potential with respect to unpassivated nanocrystal films. We elucidate the spectroelectrochemical signatures of trap states within the bandgap and conclude that undercoordinated Te at the surface constitutes the largest contribution to in-gap trap states, but that other surface states that likely originate on Cd atoms should also be considered.ChemE/Opto-electronic MaterialsApplied Science
Overcoming the exciton binding energy in two-dimensional perovskite nanoplatelets by attachment of conjugated organic chromophores
In this work we demonstrate a novel approach to achieve efficient charge separation in dimensionally and dielectrically confined two-dimensional perovskite materials. Two-dimensional perovskites generally exhibit large exciton binding energies that limit their application in optoelectronic devices that require charge separation such as solar cells, photo-detectors and in photo-catalysis. Here, we show that by incorporating a strongly electron accepting moiety, perylene diimide organic chromophores, on the surface of the two-dimensional perovskite nanoplatelets it is possible to achieve efficient formation of mobile free charge carriers. These free charge carriers are generated with ten times higher yield and lifetimes of tens of microseconds, which is two orders of magnitude longer than without the peryline diimide acceptor. This opens a novel synergistic approach, where the inorganic perovskite layers are combined with functional organic chromophores in the same material to tune the properties for specific applications.ChemE/Opto-electronic MaterialsChemE/Advanced Soft Matte
Quantitative Electrochemical Control over Optical Gain in Quantum-Dot Solids
Solution-processed quantum dot (QD) lasers are one of the holy grails of nanoscience. They are not yet commercialized because the lasing threshold is too high: one needs >1 exciton per QD, which is difficult to achieve because of fast nonradiative Auger recombination. The threshold can, however, be reduced by electronic doping of the QDs, which decreases the absorption near the band-edge, such that the stimulated emission (SE) can easily outcompete absorption. Here, we show that by electrochemically doping films of CdSe/CdS/ZnS QDs, we achieve quantitative control over the gain threshold. We obtain stable and reversible doping of more than two electrons per QD. We quantify the gain threshold and the charge carrier dynamics using ultrafast spectroelectrochemistry and achieve quantitative agreement between experiments and theory, including a vanishingly low gain threshold for doubly doped QDs. Over a range of wavelengths with appreciable gain coefficients, the gain thresholds reach record-low values of ∼1 × 10-5 excitons per QD. These results demonstrate a high level of control over the gain threshold in doped QD solids, opening a new route for the creation of cheap, solution-processable, low-threshold QD lasers. ChemE/Opto-electronic MaterialsBN/Technici en Analiste
Electrochemical Modulation of the Photophysics of Surface-Localized Trap States in Core/Shell/(Shell) Quantum Dot Films
In this work, we systematically study the spectroelectrochemical response of CdSe quantum dots (QDs), CdSe/CdS core/shell QDs with varying CdS shell thicknesses, and CdSe/CdS/ZnS core/shell/shell QDs in order to elucidate the influence of localized surface trap states on the optoelectronic properties. By correlating the differential absorbance and the photoluminescence upon electrochemically raising the Fermi level, we reveal that trap states near the conduction band (CB) edge give rise to nonradiative recombination pathways regardless of the CdS shell thickness, evidenced by quenching of the photoluminescence before the CB edge is populated with electrons. This points in the direction of shallow trap states localized on the CdS shell surface that give rise to nonradiative recombination pathways. We suggest that these shallow trap states reduce the quantum yield because of enhanced hole trapping when the Fermi level is raised electrochemically. We show that these shallow trap states are removed when additional wide band gap ZnS shells are grown around the CdSe/CdS core/shell QDs.ChemE/Opto-electronic Material
Trapping and Detrapping in Colloidal Perovskite Nanoplatelets: Elucidation and Prevention of Nonradiative Processes through Chemical Treatment
Metal-halide perovskite nanocrystals show promise as the future active material in photovoltaics, lighting, and other optoelectronic applications. The appeal of these materials is largely due to the robustness of the optoelectronic properties to structural defects. The photoluminescence quantum yield (PLQY) of most types of perovskite nanocrystals is nevertheless below unity, evidencing the existence of nonradiative charge-carrier decay channels. In this work, we experimentally elucidate the nonradiative pathways in CsPbBr3 nanoplatelets, before and after chemical treatment with PbBr2 that improves the PLQY. A combination of picosecond streak camera and nanosecond time-correlated single-photon counting measurements is used to probe the excited-state dynamics over 6 orders of magnitude in time. We find that up to 40% of the nanoplatelets from a synthesis batch are entirely nonfluorescent and cannot be turned fluorescent through chemical treatment. The other nanoplatelets show fluorescence, but charge-carrier trapping leads to losses that are prevented by chemical treatment. Interestingly, even without chemical treatment, some losses due to trapping are mitigated because trapped carriers spontaneously detrap on nanosecond-to-microsecond timescales. Our analysis shows that multiple nonradiative pathways are active in perovskite nanoplatelets, which are affected differently by chemical treatment with PbBr2. More generally, our work highlights that in-depth studies using a combination of techniques are necessary to understand nonradiative pathways in fluorescent nanocrystals. Such understanding is essential to optimize synthesis and treatment procedures.ChemE/Opto-electronic Material
Tuning and Probing the Distribution of Cu<sup>+</sup> and Cu<sup>2+</sup> Trap States Responsible for Broad-Band Photoluminescence in CuInS<sub>2</sub> Nanocrystals
The processes that govern radiative recombination in ternary CuInS2 (CIS) nanocrystals (NCs) have been heavily debated, but recently, several research groups have come to the same conclusion that a photoexcited electron recombines with a localized hole on a Cu-related trap state. Furthermore, it has been observed that single CIS NCs display narrower photoluminescence (PL) line widths than the ensemble, which led to the conclusion that within the ensemble there is a distribution of Cu-related trap states responsible for PL. In this work, we probe this trap-state distribution with in situ photoluminescence spectroelectrochemistry. We find that Cu2+ states result in individual "dark" nanocrystals, whereas Cu+ states result in "bright" NCs. Furthermore, we show that we can tune the PL position, intensity, and line width in a cyclic fashion by injecting or removing electrons from the trap-state distribution, thereby converting a subset of "dark" Cu2+ containing NCs into "bright" Cu+ containing NCs and vice versa. The electrochemical injection of electrons results in brightening, broadening, and a red shift of the PL, in line with the activation of a broad distribution of "dark" NCs (Cu2+ states) into "bright" NCs (Cu+ states) and a rise of the Fermi level within the ensemble trap-state distribution. The opposite trend is observed for electrochemical oxidation of Cu+ states into Cu2+. Our work shows that there is a direct correlation between the line width of the ensemble Cu+/Cu2+ trap-state distribution and the characteristic broad-band PL feature of CIS NCs and between Cu2+ cations in the photoexcited state (bright) and in the electrochemically oxidized ground state (dark).ChemE/Opto-electronic MaterialsApplied SciencesBN/Technici en Analiste