8 research outputs found

    Comprehensive diagnostics of acute myeloid leukemia by whole transcriptome RNA sequencing

    Get PDF
    Acute myeloid leukemia (AML) is caused by genetic aberrations that also govern the prognosis of patients and guide risk-adapted and targeted therapy. Genetic aberrations in AML are structurally diverse and currently detected by different diagnostic assays. This study sought to establish whole transcriptome RNA sequencing as single, comprehensive, and flexible platform for AML diagnostics. We developed HAMLET (Human AML Expedited Transcriptomics) as bioinformatics pipeline for simultaneous detection of fusion genes, small variants, tandem duplications, and gene expression with all information assembled in an annotated, user-friendly output file. Whole transcriptome RNA sequencing was performed on 100 AML cases and HAMLET results were validated by reference assays and targeted resequencing. The data showed that HAMLET accurately detected all fusion genes and overexpression of EVI1 irrespective of 3q26 aberrations. In addition, small variants in 13 genes that are often mutated in AML were called with 99.2% sensitivity and 100% specificity, and tandem duplications in FLT3 and KMT2A were detected by a novel algorithm based on soft-clipped reads with 100% sensitivity and 97.1% specificity. In conclusion, HAMLET has the potential to provide accurate comprehensive diagnostic information relevant for AML classification, risk assessment and targeted therapy on a single technology platform

    Successful treatment of COVID-19 infection with convalescent plasma in B-cell-depleted patients may promote cellular immunity

    Full text link
    Treatment with convalescent plasma has been shown to be safe in coronavirus disease in 2019 (COVID-19) infection, although efficacy reported in immunocompetent patients varies. Nevertheless, neutralizing antibodies are a key requisite in the fight against viral infections. Patients depleted of antibody-producing B cells, such as those treated with rituximab (anti-CD20) for hematological malignancies, lack a fundamental part of their adaptive immunity. Treatment with convalescent plasma appears to be of general benefit in this particularly vulnerable cohort. We analyzed clinical course and inflammation markers of three B-cell-depleted patients suffering from COVID-19 who were treated with convalescent plasma. In addition, we measured serum antibody levels as well as peripheral blood CD38/HLA-DR-positive T-cells ex vivo and CD137-positive T-cells after in vitro stimulation with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-derived peptides in these patients. We observed that therapy with convalescent plasma was effective in all three patients and analysis of CD137-positive T-cells after stimulation with SARS-CoV-2 peptides showed an increase in peptide-specific T-cells after application of convalescent plasma. In conclusion, we here demonstrate efficacy of convalescent plasma therapy in three B-cell-depleted patients and present data that suggest that while application of convalescent plasma elevates systemic antibody levels only transiently, it may also boost specific T-cell responses

    Natural T-cell ligands that are created by genetic variants can be transferred between cells by extracellular vesicles

    No full text
    CD4 T-cells play a central role as helper cells in adaptive immunity. Presentation of exogenous antigens in MHC class II by professional antigen-presenting cells is a crucial step in induction of specific CD4 T-cells in adaptive immune responses. For efficient induction of immunity against intracellular threats such as viruses or malignant transformations, antigens from HLA class II-negative infected or transformed cells need to be transferred to surrounding antigen-presenting cells to allow efficient priming of naive CD4 T-cells. Here we show indirect antigen presentation for a subset of natural HLA class II ligands that are created by genetic variants and demonstrated that (neo)antigens can be transferred between cells by extracellular vesicles. Intercellular transfer by extracellular vesicles was not dependent on the T-cell epitope, but rather on characteristics of the full-length protein. This mechanism of (neo)antigen transfer from HLA class II-negative cells to surrounding antigen-presenting cells may play a crucial role in induction of anti-tumor immunity. This article is protected by copyright. All rights reserved

    Optimized Whole Genome Association Scanning for Discovery of HLA Class I-Restricted Minor Histocompatibility Antigens

    Get PDF
    Patients undergoing allogeneic stem cell transplantation as treatment for hematological diseases face the risk of Graft-versus-Host Disease as well as relapse. Graft-versus-Host Disease and the favorable Graft-versus-Leukemia effect are mediated by donor T cells recognizing polymorphic peptides, which are presented on the cell surface by HLA molecules and result from single nucleotide polymorphism alleles that are disparate between patient and donor. Identification of polymorphic HLA-binding peptides, designated minor histocompatibility antigens, has been a laborious procedure, and the number and scope for broad clinical use of these antigens therefore remain limited. Here, we present an optimized whole genome association approach for discovery of HLA class I minor histocompatibility antigens. T cell clones isolated from patients who responded to donor lymphocyte infusions after HLA-matched allogeneic stem cell transplantation were tested against a panel of 191 EBV-transformed B cells, which have been sequenced by the 1000 Genomes Project and selected for expression of seven common HLA class I alleles (HLA-A∗01:01, A∗02:01, A∗03:01, B∗07:02, B∗08:01, C∗07:01, and C∗07:02). By including all polymorphisms with minor allele frequencies above 0.01, we demonstrated that the new approach allows direct discovery of minor histocompatibility antigens as exemplified by seven new antigens in eight different HLA class I alleles including one antigen in HLA-A∗24:02 and HLA-A∗23:01, for which the method has not been originally designed. Our new whole genome association strategy is expected to rapidly augment the repertoire of HLA class I-restricted minor histocompatibility antigens that will become available for donor selection and clinical use to predict, follow or manipulate Graft-versus-Leukemia effect and Graft-versus-Host Disease after allogeneic stem cell transplantation

    Chaperone protein HSC70 regulates intercellular transfer of Y chromosome antigen DBY.

    No full text
    Recent studies have demonstrated that CD4+ T cells can efficiently reject MHC-II-negative tumors. This requires indirect presentation of tumor-associated antigens on surrounding antigen-presenting cells. We hypothesized that intercellular transfer of proteins is not the sole consequence of cell death-mediated protein release, but depends on heat-shock cognate protein 70 (HSC70) and its KFERQ-like binding motif on substrate proteins. Using human Y chromosome antigen DBY, we showed that mutation of one of its 2 putative binding motifs markedly diminished T cell activation after indirect presentation and reduced protein-protein interaction with HSC70. Intercellular antigen transfer was shown to be independent of cell-cell contact, but relied on engulfment within secreted microvesicles. In vivo, alterations of the homologous KFERQ-like motif in murine DBY hampered tumor rejection, T cell activation, and migration into the tumor and substantially impaired survival. Collectively, we show that intercellular antigen transfer of DBY is tightly regulated via binding to HSC70 and that this mechanism influences recognition and rejection of MHC-II-negative tumors in vivo
    corecore