139 research outputs found

    Effect of tissue-grouped regulatory variants associated to type 2 diabetes in related secondary outcomes

    Get PDF
    Genome-wide association studies have identified over five hundred loci that contribute to variation in type 2 diabetes (T2D), an established risk factor for many diseases. However, the mechanisms and extent through which these loci contribute to subsequent outcomes remain elusive. We hypothesized that combinations of T2D-associated variants acting on tissue-specific regulatory elements might account for greater risk for tissue-specific outcomes, leading to diversity in T2D disease progression. We searched for T2D-associated variants acting on regulatory elements and expression quantitative trait loci (eQTLs) in nine tissues. We used T2D tissue-grouped variant sets as genetic instruments to conduct 2-Sample Mendelian Randomization (MR) in ten related outcomes whose risk is increased by T2D using the FinnGen cohort. We performed PheWAS analysis to investigate whether the T2D tissue-grouped variant sets had specific predicted disease signatures. We identified an average of 176 variants acting in nine tissues implicated in T2D, and an average of 30 variants acting on regulatory elements that are unique to the nine tissues of interest. In 2-Sample MR analyses, all subsets of regulatory variants acting in different tissues were associated with increased risk of the ten secondary outcomes studied on similar levels. No tissue-grouped variant set was associated with an outcome significantly more than other tissue-grouped variant sets. We did not identify different disease progression profiles based on tissue-specific regulatory and transcriptome information. Bigger sample sizes and other layers of regulatory information in critical tissues may help identify subsets of T2D variants that are implicated in certain secondary outcomes, uncovering system-specific disease progression

    Common Variants Associated With OSMR Expression Contribute to Carotid Plaque Vulnerability, but Not to Cardiovascular Disease in Humans

    Get PDF
    Background and Aims: Oncostatin M (OSM) signaling is implicated in atherosclerosis, however the mechanism remains unclear. We investigated the impact of common genetic variants in OSM and its receptors, OSMR and LIFR, on overall plaque vulnerability, plaque phenotype, intraplaque OSMR and LIFR expression, coronary artery calcification burden and cardiovascular disease susceptibility. Methods and Results: We queried Genotype-Tissue Expression data and found that rs13168867 (C allele) was associated with decreased OSMR expression and that rs10491509 (A allele) was associated with increased LIFR expression in arterial tissues. No variant was significantly associated with OSM expression. We associated these two variants with plaque characteristics from 1,443 genotyped carotid endarterectomy patients in the Athero-Express Biobank Study. After correction for multiple testing, rs13168867 was significantly associated with an increased overall plaque vulnerability (β = 0.118 ± s.e. = 0.040, p = 3.00 × 10−3, C allele). Looking at individual plaque characteristics, rs13168867 showed strongest associations with intraplaque fat (β = 0.248 ± s.e. = 0.088, p = 4.66 × 10−3, C allele) and collagen content (β = −0.259 ± s.e. = 0.095, p = 6.22 × 10−3, C allele), but these associations were not significant after correction for multiple testing. rs13168867 was not associated with intraplaque OSMR expression. Neither was intraplaque OSMR expression associated with plaque vulnerability and no known OSMR eQTLs were associated with coronary artery calcification burden, or cardiovascular disease susceptibility. No associations were found for rs10491509 in the LIFR locus. Conclusions: Our study suggests that rs1316887 in the OSMR locus is associated with increased plaque vulnerability, but not with coronary calcification or cardiovascular disease risk. It remains unclear through which precise biological mechanisms OSM signaling exerts its effects on plaque morphology. However, the OSM-OSMR/LIFR pathway is unlikely to be causally involved in lifetime cardiovascular disease susceptibility

    Loss of Y Chromosome in Blood Is Associated With Major Cardiovascular Events During Follow-Up in Men After Carotid Endarterectomy

    Get PDF
    Background: Recent studies found an immune regulatory role for Y chromosome and a relationship between loss of Y chromosome (LOY) in blood cells and a higher risk of cancer and mortality. Given involvement of immune cells in atherosclerosis, we hypothesized that LOY is associated with the severity of atherosclerotic plaque characteristics and outcome in men undergoing carotid endarterectomy. // Methods and Results: LOY was quantified in blood and plaque from raw intensity genotyping data in men within the Athero-Express biobank study. Plaques were dissected, and the culprit lesions used for histology and the measurement of inflammatory proteins. We tested LOY for association with (inflammatory) atherosclerotic plaque phenotypes and cytokines and assessed the association of LOY with secondary events during 3-year follow-up. Of 366 patients with carotid endarterectomy, 61 exhibited some degree of LOY in blood. LOY was also present in atherosclerotic plaque lesions (n=8/242, 3%). LOY in blood was negatively associated with age (β=−0.03/10 y; r2=0.07; P=1.6×10–7) but not with cardiovascular disease severity at baseline. LOY in blood was associated with a larger atheroma size (odds ratio, 2.15; 95% confidence interval, 1.06–4.76; P=0.04); however, this association was not significant after correction for multiple testing. LOY was independently associated with secondary major cardiovascular events (hazard ratio=2.28; 95% confidence interval, 1.11–4.67; P=0.02) in blood when corrected for confounders. // Conclusions: In this hypothesis-generating study, LOY in blood is independently associated with secondary major cardiovascular events in a severely atherosclerotic population. Our data could indicate that LOY affects secondary outcome via other mechanisms than inflammation in the atherosclerotic plaque

    Functional investigation of the coronary artery disease gene SVEP1

    Get PDF
    A missense variant of the sushi, von Willebrand factor type A, EGF and pentraxin domain containing protein 1 (SVEP1) is genome-wide significantly associated with coronary artery disease. The mechanisms how SVEP1 impacts atherosclerosis are not known. We found endothelial cells (EC) and vascular smooth muscle cells to represent the major cellular source of SVEP1 in plaques. Plaques were larger in atherosclerosis-prone Svep1 haploinsufficient (ApoE^{−/−}Svep1^{+/−}) compared to Svep1 wild-type mice (ApoE^{−/−}Svep1^{+/+}) and ApoE^{−/−}Svep1^{+/−} mice displayed elevated plaque neutrophil, Ly6C^{high} monocyte, and macrophage numbers. We assessed how leukocytes accumulated more inside plaques in ApoE^{−/−}Svep1^{+/−} mice and found enhanced leukocyte recruitment from blood into plaques. In vitro, we examined how SVEP1 deficiency promotes leukocyte recruitment and found elevated expression of the leukocyte attractant chemokine (C-X-C motif) ligand 1 (CXCL1) in EC after incubation with missense compared to wild-type SVEP1. Increasing wild-type SVEP1 levels silenced endothelial CXCL1 release. In line, plasma Cxcl1 levels were elevated in ApoE^{−/−}Svep1^{+/−} mice. Our studies reveal an atheroprotective role of SVEP1. Deficiency of wild-type Svep1 increased endothelial CXCL1 expression leading to enhanced recruitment of proinflammatory leukocytes from blood to plaque. Consequently, elevated vascular inflammation resulted in enhanced plaque progression in Svep1 deficiency

    Microanatomy of the Human Atherosclerotic Plaque by Single-Cell Transcriptomics

    Get PDF
    RATIONALE: Atherosclerotic lesions are known for their cellular heterogeneity, yet the molecular complexity within the cells of human plaques has not been fully assessed. OBJECTIVE: Using single-cell transcriptomics and chromatin accessibility, we gained a better understanding of the pathophysiology underlying human atherosclerosis. METHODS AND RESULTS: We performed single-cell RNA and single-cell ATAC sequencing on human carotid atherosclerotic plaques to define the cells at play and determine their transcriptomic and epigenomic characteristics. We identified 14 distinct cell populations including endothelial cells, smooth muscle cells, mast cells, B cells, myeloid cells, and T cells and identified multiple cellular activation states and suggested cellular interconversions. Within the endothelial cell population, we defined subsets with angiogenic capacity plus clear signs of endothelial to mesenchymal transition. CD4+ and CD8+ T cells showed activation-based subclasses, each with a gradual decline from a cytotoxic to a more quiescent phenotype. Myeloid cells included 2 populations of proinflammatory macrophages showing IL (interleukin) 1B or TNF (tumor necrosis factor) expression as well as a foam cell-like population expressing TREM2 (triggering receptor expressed on myeloid cells 2) and displaying a fibrosis-promoting phenotype. ATACseq data identified specific transcription factors associated with the myeloid subpopulation and T cell cytokine profiles underlying mutual activation between both cell types. Finally, cardiovascular disease susceptibility genes identified using public genome-wide association studies data were particularly enriched in lesional macrophages, endothelial, and smooth muscle cells. CONCLUSIONS: This study provides a transcriptome-based cellular landscape of human atherosclerotic plaques and highlights cellular plasticity and intercellular communication at the site of disease. This detailed definition of cell communities at play in atherosclerosis will facilitate cell-based mapping of novel interventional targets with direct functional relevance for the treatment of human diseas

    Genetic Susceptibility Loci for Cardiovascular Disease and Their Impact on Atherosclerotic Plaques

    Get PDF
    BACKGROUND: Atherosclerosis is a chronic inflammatory disease in part caused by lipid uptake in the vascular wall, but the exact underlying mechanisms leading to acute myocardial infarction and stroke remain poorly understood. Large consortia identified genetic susceptibility loci that associate with large artery ischemic stroke and coronary artery disease. However, deciphering their underlying mechanisms are challenging. Histological studies identified destabilizing characteristics in human atherosclerotic plaques that associate with clinical outcome. To what extent established susceptibility loci for large artery ischemic stroke and coronary artery disease relate to plaque characteristics is thus far unknown but may point to novel mechanisms. METHODS: We studied the associations of 61 established cardiovascular risk loci with 7 histological plaque characteristics assessed in 1443 carotid plaque specimens from the Athero-Express Biobank Study. We also assessed if the genotyped cardiovascular risk loci impact the tissue-specific gene expression in 2 independent biobanks, Biobank of Karolinska Endarterectomy and Stockholm Atherosclerosis Gene Expression. RESULTS: A total of 21 established risk variants (out of 61) nominally associated to a plaque characteristic. One variant (rs12539895, risk allele A) at 7q22 associated to a reduction of intraplaque fat, P=5.09×10−6 after correction for multiple testing. We further characterized this 7q22 Locus and show tissue-specific effects of rs12539895 on HBP1 expression in plaques and COG5 expression in whole blood and provide data from public resources showing an association with decreased LDL (low-density lipoprotein) and increase HDL (high-density lipoprotein) in the blood. CONCLUSIONS: Our study supports the view that cardiovascular susceptibility loci may exert their effect by influencing the atherosclerotic plaque characteristics

    Caveolin-1 overexpression is an early event in the progression of papillary carcinoma of the thyroid

    Get PDF
    Caveolin-1 is a major structural component of caveolae, which are plasma membrane microdomains implicated in the regulation of intracellular signalling pathways. Previous in vitro and in vivo studies on the function of caveolin-1 in carcinoma showed controversial results, indicating that the physiological role of caveolin-1 varies according to the origin of carcinoma. In this study, we investigated caveolin-1 expression in thyroid neoplasms by means of immunohistochemistry using a rabbit polyclonal antibody against caveolin-1. Normal follicular cells did not express caveolin-1. In papillary carcinoma, caveolin-1 expression was observed in high incidence, and especially in microcancer (less than 1.0 cm in diameter), caveolin-1 was positive in all cases except one. In undifferentiated (anaplastic) carcinoma, its incidence was significantly reduced. On the other hand, all cases of follicular carcinoma and adenoma were classified as negative for caveolin-1. These results suggest that caveolin-1 may play a role predominantly in the early phase of papillary carcinoma, whereas it has little influence on follicular tumours
    corecore