49 research outputs found

    Enhancement of host defense against pathogens by antimicrobial peptides : a new approach to combat microbial drug resistance

    Get PDF
    Due to their abilities to eliminate pathogens and modulate host__s immune responses, antimicrobial peptides are considered as potential alternatives for the treatment of infections with (multi-drug resistant) pathogens. In this thesis the immunomodulatory actions of two peptides have been investigated in order to gain insight in their mechanism of antimicrobial action; human lactoferrin-derived antimicrobial peptide hLF1-11 and the human cathelicidin LL-37. As hLF1-11 is active against infections in animals within a short period, we hypothesized immunomodulatory effects of hLF1-11 on innate immune cells. Results described in this thesis show that hLF1-11 enhances the inflammatory response of monocytes and modulates monocyte-macrophage differentiation resulting in macrophages that display enhanced antimicrobial effector functions. In addition, hLF1-11 drives monocyte-dendritic cell differentiation toward DCs that promote antifungal responses and induce Th17 polarization. Myeloperoxidase was identified as the intracellular target of hLF1-11 mediating immunomodulatory effects of this peptide. We also found that LL-37 was able to modulate monocyte-macrophage differentiation, however different than hLF1-11 as this resulted in macrophages with a pro-inflammatory phenotype. Together, these data underscore the bright future of antimicrobial peptides with immune modulating activity as these peptides might be developed further into a novel class of anti-infectives to which microbial drug-resistance is unlikely to develop quickly.SenterNovem ISO44096UBL - phd migration 201

    Impact of the local inflammatory environment on mucosal vitamin D metabolism and signaling in chronic inflammatory lung diseases

    Get PDF
    Vitamin D plays an active role in the modulation of innate and adaptive immune responses as well as in the protection against respiratory pathogens. Evidence for this immunomodulatory and protective role is derived from observational studies showing an association between vitamin D deficiency, chronic airway diseases and respiratory infections, and is supported by a range of experimental studies using cell culture and animal models. Furthermore, recent intervention studies have now shown that vitamin D supplementation reduces exacerbation rates in vitamin D-deficient patients with chronic obstructive pulmonary disease (COPD) or asthma and decreases the incidence of acute respiratory tract infections. The active vitamin D metabolite, 1,25-dihydroxy-vitamin D (1,25(OH)(2)D), is known to contribute to the integrity of the mucosal barrier, promote killing of pathogens (via the induction of antimicrobial peptides), and to modulate inflammation and immune responses. These mechanisms may partly explain its protective role against infections and exacerbations in COPD and asthma patients. The respiratory mucosa is an important site of local 1,25(OH)(2)D synthesis, degradation and signaling, a process that can be affected by exposure to inflammatory mediators. As a consequence, mucosal inflammation and other disease-associated factors, as observed in e.g., COPD and asthma, may modulate the protective actions of 1,25(OH)(2)D. Here, we discuss the potential consequences of various disease-associated processes such as inflammation and exposure to pathogens and inhaled toxicants on vitamin D metabolism and local responses to 1,25(OH)(2)D in both immune- and epithelial cells. We furthermore discuss potential consequences of disturbed local levels of 25(OH)D and 1,25(OH)(2)D for chronic lung diseases. Additional insight into the relationship between disease-associated mechanisms and local effects of 1,25(OH)(2)D is expected to contribute to the design of future strategies aimed at improving local levels of 1,25(OH)(2)D and signaling in chronic inflammatory lung diseases.Pathogenesis and treatment of chronic pulmonary disease

    Lung epithelial cells interact with immune cells and bacteria to shape the microenvironment in tuberculosis

    Get PDF
    The lung epithelium has long been overlooked as a key player in tuberculosis disease. In addition to acting as a direct barrier to Mycobacterium tuberculosis (Mtb), epithelial cells (EC) of the airways and alveoli act as first responders during Mtb infections; they directly sense and respond to Mtb by producing mediators such as cytokines, chemokines and antimicrobials. Interactions of EC with innate and adaptive immune cells further shape the immune response against Mtb. These three essential components, epithelium, immune cells and Mtb, are rarely studied in conjunction, owing in part to difficulties in coculturing them. Recent advances in cell culture technologies offer the opportunity to model the lung microenvironment more closely. Herein, we discuss the interplay between lung EC, immune cells and Mtb and argue that modelling these interactions is of key importance to unravel early events during Mtb infection.Immunogenetics and cellular immunology of bacterial infectious disease

    Acute cigarette smoke exposure leads to higher viral infection in human bronchial epithelial cultures by altering interferon, glycolysis and GDF15-related pathways

    Get PDF
    Background Acute exacerbations of chronic inflammatory lung diseases, such as chronic obstructive pulmonary disease (COPD), are frequently associated with rhinovirus (RV) infections. Despite these associations, the pathogenesis of virus-induced exacerbations is incompletely understood. We aimed to investigate effects of cigarette smoke (CS), a primary risk factor for COPD, on RV infection in airway epithelium and identify novel mechanisms related to these effects. Methods Primary bronchial epithelial cells (PBEC) from COPD patients and controls were differentiated by culture at the air-liquid interface (ALI) and exposed to CS and RV-A16. Bulk RNA sequencing was performed using samples collected at 6 and 24 h post infection (hpi), and viral load, mediator and l-lactate levels were measured at 6, 24 and 48hpi. To further delineate the effect of CS on RV-A16 infection, we performed growth differentiation factor 15 (GDF15) knockdown, l-lactate and interferon pre-treatment in ALI-PBEC. We performed deconvolution analysis to predict changes in the cell composition of ALI-PBEC after the various exposures. Finally, we compared transcriptional responses of ALI-PBEC to those in nasal epithelium after human RV-A16 challenge. Results CS exposure impaired antiviral responses at 6hpi and increased viral replication at 24 and 48hpi in ALI-PBEC. At 24hpi, CS exposure enhanced expression of RV-A16-induced epithelial interferons, inflammation-related genes and CXCL8. CS exposure increased expression of oxidative stress-related genes, of GDF15, and decreased mitochondrial membrane potential. GDF15 knockdown experiments suggested involvement of this pathway in the CS-induced increase in viral replication. Expression of glycolysis-related genes and l-lactate production were increased by CS exposure, and was demonstrated to contribute to higher viral replication. No major differences were demonstrated between COPD and non-COPD-derived cultures. However, cellular deconvolution analysis predicted higher secretory cells in COPD-derived cultures at baseline. Conclusion Altogether, our findings demonstrate that CS exposure leads to higher viral infection in human bronchial epithelium by altering not only interferon responses, but likely also through a switch to glycolysis, and via GDF15related pathways.Pathogenesis and treatment of chronic pulmonary disease

    Prolonged activation of nasal immune cell populations and development of tissue-resident SARS-CoV-2-specific CD8(+) T cell responses following COVID-19

    Get PDF
    Systemic immune cell dynamics during coronavirus disease 2019 (COVID-19) are extensively documented, but these are less well studied in the (upper) respiratory tract, where severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replicates(1-6). Here, we characterized nasal and systemic immune cells in individuals with COVID-19 who were hospitalized or convalescent and compared the immune cells to those seen in healthy donors. We observed increased nasal granulocytes, monocytes, CD11c(+) natural killer (NK) cells and CD4(+) T effector cells during acute COVID-19. The mucosal proinflammatory populations positively associated with peripheral blood human leukocyte antigen (HLA)-DRlow monocytes, CD38(+)PD1(+)CD4(+) T effector (T-eff) cells and plasmablasts. However, there was no general lymphopenia in nasal mucosa, unlike in peripheral blood. Moreover, nasal neutrophils negatively associated with oxygen saturation levels in blood. Following convalescence, nasal immune cells mostly normalized, except for CD127(+) granulocytes and CD38(+)CD8(+) tissue-resident memory T cells (T-RM). SARS-CoV-2-specific CD8(+) T cells persisted at least 2 months after viral clearance in the nasal mucosa, indicating that COVID-19 has both transient and long-term effects on upper respiratory tract immune responses.Perioperative Medicine: Efficacy, Safety and Outcome (Anesthesiology/Intensive Care
    corecore