7 research outputs found

    Lactobacillus plantarum WCFS1 and its host interaction : a dozen years after the genome

    Get PDF
    Lactobacillus plantarum WCFS1 is one of the best studied Lactobacilli, notably as its genome was unravelled over 12years ago. L.plantarum WCFS1 can be grown to high densities, is amenable to genetic transformation and highly robust with a relatively high survival rate during the gastrointestinal passage. In this review, we present and discuss the main insights provided by the functional genomics research on L.plantarum WCFS1 with specific attention for the molecular mechanisms related to its interaction with the human host and its potential to modify the immune system, and induce other health-related benefits. Whereas most insight has been gained in mouse and other model studies, onlyfive human studies have been reported with L.plantarum WCFS1. Hence NCIMB 8826 (the parental strain of L.plantarum WCFS1) in human trials as to capitalize on the wealth of knowledge that is summarized here.Peer reviewe

    A novel antifolate suppresses growth of FPGS-deficient cells and overcomes methotrexate resistance

    Get PDF
    Cancer cells make extensive use of the folate cycle to sustain increased anabolic metabolism. Multiple chemotherapeutic drugs interfere with the folate cycle, including methotrexate and 5-fluorouracil that are commonly applied for the treatment of leukemia and colorectal cancer (CRC), respectively. Despite high success rates, therapy-induced resistance causes relapse at later disease stages. Depletion of folylpolyglutamate synthetase (FPGS), which normally promotes intracellular accumulation and activity of natural folates and methotrexate, is linked to methotrexate and 5-fluorouracil resistance and its association with relapse illustrates the need for improved intervention strategies. Here, we describe a novel antifolate (C1) that, like methotrexate, potently inhibits dihydrofolate reductase and downstream one-carbon metabolism. Contrary to methotrexate, C1 displays optimal efficacy in FPGS-deficient contexts, due to decreased competition with intracellular folates for interaction with dihydrofolate reductase. We show that FPGS-deficient patient-derived CRC organoids display enhanced sensitivity to C1, whereas FPGS-high CRC organoids are more sensitive to methotrexate. Our results argue that polyglutamylation-independent antifolates can be applied to exert selective pressure on FPGS-deficient cells during chemotherapy, using a vulnerability created by polyglutamylation deficiency

    A novel antifolate suppresses growth of FPGS-deficient cells and overcomes methotrexate resistance

    Get PDF
    Cancer cells make extensive use of the folate cycle to sustain increased anabolic metabolism. Multiple chemotherapeutic drugs interfere with the folate cycle, including methotrexate and 5-fluorouracil that are commonly applied for the treatment of leukemia and colorectal cancer (CRC), respectively. Despite high success rates, therapy-induced resistance causes relapse at later disease stages. Depletion of folylpolyglutamate synthetase (FPGS), which normally promotes intracellular accumulation and activity of natural folates and methotrexate, is linked to methotrexate and 5-fluorouracil resistance and its association with relapse illustrates the need for improved intervention strategies. Here, we describe a novel antifolate (C1) that, like methotrexate, potently inhibits dihydrofolate reductase and downstream one-carbon metabolism. Contrary to methotrexate, C1 displays optimal efficacy in FPGS-deficient contexts, due to decreased competition with intracellular folates for interaction with dihydrofolate reductase. We show that FPGS-deficient patient-derived CRC organoids display enhanced sensitivity to C1, whereas FPGS-high CRC organoids are more sensitive to methotrexate. Our results argue that polyglutamylation-independent antifolates can be applied to exert selective pressure on FPGS-deficient cells during chemotherapy, using a vulnerability created by polyglutamylation deficiency

    A first-in-class Wiskott-Aldrich syndrome protein activator with anti-tumor activity in hematologic cancers

    Get PDF
    Hematological cancers are among the most common cancers in adults and children. Despite significant improvements in therapies, many patients still succumb to the disease. Therefore, novel therapies are needed. The Wiskott-Aldrich syndrome protein (WASp) family regulates actin assembly in conjunction with the Arp2/3 complex, a ubiquitous nucleation factor. WASp is expressed exclusively in hematopoietic cells and exists in two allosteric conformations: autoinhibited or activated. Here, we describe the development of EG-011, a first-in-class small molecule activator of the WASp auto-inhibited form. EG-011 possesses in vitro and in vivo anti-tumor activity as a single agent in lymphoma, leukemia, and multiple myeloma, including models of secondary resistance to PI3K, BTK, and proteasome inhibitors. The in vitro activity was confirmed in a lymphoma xenograft. Actin polymerization and WASp binding was demonstrated using multiple techniques. Transcriptome analysis highlighted homology with drugs-inducing actin polymerization

    De rol van voeding op het darmmicrobioom

    No full text
    Het darmmicrobioom is een complex ecosysteem van micro-organismen in het maagdarmstelsel dat een essentiële rol speelt bij het metabolisme, het immuunsysteem en de hormoonhuishouding. De groeiende hoeveelheid wetenschappelijk bewijs onderstreept het belang van het darmmicrobioom voor de gezondheid. De diversiteit in de samenstelling van het darmmicrobioom is hierbij de belangrijkste parameter, waarbij veranderingen in de balans – een dysbiose – kunnen leiden tot ziekte. Een dysbiose word dan ook geassocieerd met verschillende metabole, inflammatoire en neurologische aandoeningen. Factoren zoals een ongezonde leefstijl en medicijngebruik kunnen een dysbiose induceren. In dit artikel wordt het effect van specifieke voeding, prebiotica en probiotica op het microbioom gepresenteerd om de balans van het darmecosysteem te herstellen. Omdat het microbioom verstrekkende gevolgen heeft voor de gezondheid en daarbij relatief eenvoudig is te beïnvloeden met voeding, leefstijl en supplementen, is meer kennis over dit onderwerp van belang voor gezondheidsprofessionals

    The underexposed role of food matrices in probiotic products: Reviewing the relationship between carrier matrices and product parameters

    No full text
    Probiotic microorganisms are increasingly incorporated into food matrices in order to confer proposed health benefits on the consumer. It is important that the health benefits, sensory properties, shelf-life and probiotic gastrointestinal tract (GIT) survival of these products are carefully balanced as they determine functionality and drive consumer acceptance. The strain-specific effects of probiotic species are imperative in this process but carrier matrices may play a pivotal role as well. This study therefore recapitulates the wealth of knowledge on carrier matrices and their interaction with probiotic strains. The most substantiated carrier matrices, factors that influence probiotic functionality and matrix effects on shelf-life, GIT survival and clinical efficacy are reviewed. Results indicate that carrier matrices have a significant impact on the quality of probiotic products. Matrix components, such as proteins, carbohydrates and flavoring agents are shown to alter probiotic efficacy and viability. In vivo studies furthermore revealed strain-dependent matrix effects on the GIT survival of probiotic bacteria. However, only a limited number of studies have specifically addressed the effects of carrier matrices on the aforementioned product-parameters; most studies seem to focus solely on the strain-specific effects of probiotic microorganisms. This hampers the innovation of probiotic products. More human studies, comparing not only different probiotic strains but different carrier matrices as well, are needed to drive the innovation cycle
    corecore