8 research outputs found

    Perioperative management of children with glycogen storage disease type II-Pompe disease

    Get PDF
    Background: Pompe disease is a rare metabolic disorder caused by a deficiency of the lysosomal enzyme acid α-glucosidase. Glycogen accumulation damages skeletal, cardiac, and smooth muscles, causing a progressive and debilitating muscle weakness and cardiomyopathy. As life expectancy has much improved since the introduction of enzyme replacement therapy an increasing number of patients are referred for surgical procedures. Due to the potential cardiopulmonary complications, these patients form a high-risk group for the anesthesiologist. Aims: In this study, we investigated the incidence of perioperative complications in children with Pompe disease treated in our hospital since the introduction of enzyme replacement therapy. Methods: Anesthetic and perioperative data of children with Pompe disease treated between 1999 and 2015 in the Erasmus MC-Sophia Children's Hospital, University Medical Centre, Rotterdam, The Netherlands, were collected, retrospectively. Results: Of the 65 children with Pompe disease, 34 patients underwent in total 77, mostly low-risk, surgical procedures. Twenty-one children had the classic infantile form and 13 had a nonclassic presentation of Pompe disease. In 13 (16.8%) procedures, 1 or more perioperative complications occurred. Perioperative desaturation was the main complication (12.9%), followed by arrhythmia (3.8%) and heart failure requiring diuretic treatment (2.6%). One child died 2 days postoperatively, but this was considered unrelated to the procedure. Conclusion: Despite the potentially high anesthetic risk for children with Pompe disease under enzym

    Segmental and total uniparental isodisomy (UPiD) as a disease mechanism in autosomal recessive lysosomal disorders : evidence from SNP arrays

    Get PDF
    Analyses in our diagnostic DNA laboratory include genes involved in autosomal recessive (AR) lysosomal storage disorders such as glycogenosis type II (Pompe disease) and mucopolysaccharidosis type I (MPSI, Hurler disease). We encountered 4 cases with apparent homozygosity for a disease-causing sequence variant that could be traced to one parent only. In addition, in a young child with cardiomyopathy, in the absence of other symptoms, a diagnosis of Pompe disease was considered. Remarkably, he presented with different enzymatic and genotypic features between leukocytes and skin fibroblasts. All cases were examined with microsatellite markers and SNP genotyping arrays. We identified one case of total uniparental disomy (UPD) of chromosome 17 leading to Pompe disease and three cases of segmental uniparental isodisomy (UPiD) causing Hurler-(4p) or Pompe disease (17q). One Pompe patient with unusual combinations of features was shown to have a mosaic segmental UPiD of chromosome 17q. The chromosome 17 UPD cases amount to 11% of our diagnostic cohort of homozygous Pompe patients (plus one case of pseudoheterozygosity) where segregation analysis was possible. We conclude that inclusion of parental DNA is mandatory for reliable DNA diagnostics. Mild or unusual phenotypes of AR diseases should alert physicians to the possibility of mosaic segmental UPiD. SNP genotyping arrays are used in diagnostic workup of patients with developmental delay. Our results show that even small Regions of Homozygosity that include telomeric areas are worth reporting, regardless of the imprinting status of the chromosome, as they might indicate segmental UPiD.Peer reviewe

    Effect of Anti-Iduronate 2-Sulfatase Antibodies in Patients with Mucopolysaccharidosis Type II Treated with Enzyme Replacement Therapy

    Get PDF
    Objective To assess the relationship between anti-Iduronate 2-sulfatase (IDS) antibodies, IDS genotypes, phenotypes and their impact in patients with enzyme replacement therapy (ERT)-treated Mucopolysaccharidosis type II. Study design Dutch patients treated with ERT were analyzed in this observational cohort study. Antibody titers were determined by enzyme-linked immunosorbent assay. Neutralizing effects were measured in fibroblasts. Pharmacokinetic analysis of ERT was combined with immunoprecipitation. Urinary glycosaminoglycans were measured using mass spectrometry and dimethylmethylene blue. Results Eight of 17 patients (47%) developed anti-IDS antibodies. Three patients with the severe, neuronopathic phenotype, two of whom did not express IDS protein, showed sustained antibodies for up to 10 years of ERT. Titers of 1:5120 or greater inhibited cellular IDS uptake and/or intracellular activity in vitro. In 1 patient who was neuronopathic with a titer of 1:20 480, pharmacokinetic analysis showed that all plasma recombinant IDS was antibody bound. This finding was not the case in 2 patients who were not neuronopathic with a titer of 1:1280 or less. Patients with sustained antibody titers showed increased urinary glycosaminoglycan levels compared with patients with nonsustained or no-low titers. Conclusions Patients with the neuronopathic form and lack of IDS protein expression were most at risk to develop sustained anti-IDS antibody titers, which inhibited IDS uptake and/or activity in vitro, and the efficacy of ERT in patients by lowering urinary glycosaminoglycan levels. (J Pediatr 2022;248:100-7)

    The natural course of infantile Pompe's disease: 20 original cases compared with 133 cases from the literature

    No full text
    Objective. Infantile Pompe's disease is a lethal cardiac and muscular disorder. Current developments toward enzyme replacement therapy are promising. The aim of our study is to delineate the natural course of the disease to verify endpoints of clinical studies. Methods. A total of 20 infantile patients diagnosed by the collaborative Dutch centers and 133 cases reported in literature were included in the study. Information on clinical history, physical examination, and diagnostic parameters was collected. Results. The course of Pompe's disease is essentially the same in the Dutch and the general patient population. Symptoms start at a median age of 1.6 months in both groups. The median age of death is 7.7 and 6 months, respectively. Five percent of the Dutch patients and 8% of all reported patients survive beyond 1 year of age. Only 2 patients from literature became older than 18 months. A progressive cardiac hypertrophy is characteristic for infantile Pompe's disease. The diastolic thickness of the left ventricular posterior wall and cardiac weight at autopsy increase significantly with age. Motor development is severely delayed and major developmental milestones are generally not achieved. For the Dutch patient group, growth deviates significantly from normal despite start of nasogastric tube feeding. Levels of aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, creatine kinase, or creatine kinase-myocardial band isoenzyme are typically elevated, although aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase increase significantly with age. The patients have fully deleterious mutations. Acid alpha-glucosidase activity is severely deficient. Conclusions. Survival, decrease of the diastolic thickness of the left ventricular posterior wall, and achievement of major motor milestones are valid endpoints for therapeutic studies of infantile Pompe's disease. Mutation analysis and measurement of the alpha-glucosidase activity should be part of the enrollment progra

    Segmental and total uniparental isodisomy (UPiD) as a disease mechanism in autosomal recessive lysosomal disorders: evidence from SNP arrays

    No full text
    Analyses in our diagnostic DNA laboratory include genes involved in autosomal recessive (AR) lysosomal storage disorders such as glycogenosis type II (Pompe disease) and mucopolysaccharidosis type I (MPSI, Hurler disease). We encountered 4 cases with apparent homozygosity for a disease-causing sequence variant that could be traced to one parent only. In addition, in a young child with cardiomyopathy, in the absence of other symptoms, a diagnosis of Pompe disease was considered. Remarkably, he presented with different enzymatic and genotypic features between leukocytes and skin fibroblasts. All cases were examined with microsatellite markers and SNP genotyping arrays. We identified one case of total uniparental disomy (UPD) of chromosome 17 leading to Pompe disease and three cases of segmental uniparental isodisomy (UPiD) causing Hurler-(4p) or Pompe disease (17q). One Pompe patient with unusual combinations of features was shown to have a mosaic segmental UPiD of chromosome 17q. The chromosome 17 UPD cases amount to 11% of our diagnostic cohort of homozygous Pompe patients (plus one case of pseudoheterozygosity) where segregation analysis was possible. We conclude that inclusion of parental DNA is mandatory for reliable DNA diagnostics. Mild or unusual phenotypes of AR diseases should alert physicians to the possibility of mosaic segmental UPiD. SNP genotyping arrays are used in diagnostic workup of patients with developmental delay. Our results show that even small Regions of Homozygosity that include telomeric areas are worth reporting, regardless of the imprinting status of the chromosome, as they might indicate segmental UPiD
    corecore