29 research outputs found

    Correction of scan time dependence of standard uptake values in oncological PET

    Get PDF
    BACKGROUND: Standard uptake values (SUV) as well as tumor-to-blood standard uptake ratios (SUR) measured with [ (18)F-]fluorodeoxyglucose (FDG) PET are time dependent. This poses a serious problem for reliable quantification since variability of scan start time relative to the time of injection is a persistent issue in clinical oncological Positron emission tomography (PET). In this work, we present a method for scan time correction of, both, SUR and SUV. METHODS: Assuming irreversible FDG kinetics, SUR is linearly correlated to K(m) (the metabolic rate of FDG), where the slope only depends on the shape of the arterial input function (AIF) and on scan time. Considering the approximately invariant shape of the AIF, this slope (the ‘Patlak time’) is an investigation independent function of scan time. This fact can be used to map SUR and SUV values from different investigations to a common time point for quantitative comparison. Additionally, it turns out that modelling the invariant AIF shape by an inverse power law is possible which further simplifies the correction procedure. The procedure was evaluated in 15 fully dynamic investigations of liver metastases from colorectal cancer and 10 dual time point (DTP) measurements. From each dynamic study, three ‘static scans’ at T=20,35,and 55 min post injection (p.i.) were created, where the last scan defined the reference time point to which the uptake values measured in the other two were corrected. The corrected uptake values were then compared to those actually measured at the reference time. For the DTP studies, the first scan (acquired at (78.1 ± 15.9) min p.i.) served as the reference, and the uptake values from the second scan (acquired (39.2 ± 9.9) min later) were corrected accordingly and compared to the reference. RESULTS: For the dynamic data, the observed difference between uncorrected values and values at reference time was (-52±4.5)% at T=20 min and (-31±3.7)% at T=35 min for SUR and (-30±6.6)% at T=20 min and (-16±4)% at T=35 min for SUV. After correction, the difference was reduced to (-2.9±6.6)% at T=20 min and (-2.7±5)% at T=35 min for SUR and (1.9% ± 6.2)% at T=20 min and (1.7 ± 3.3)% at T=35 min for SUV. For the DTP studies, the observed differences of SUR and SUV between late and early scans were (48 ± 11)% and (24 ± 8.4)%, respectively. After correction, these differences were reduced to (2.6 ± 6.9)% and (-2.4±7.3)%, respectively. CONCLUSION: If FDG kinetics is irreversible in the targeted tissue, correction of SUV and SUR for scan time variability is possible with good accuracy. The correction distinctly improves comparability of lesion uptake values measured at different times post injection

    18F-FDG PET/CT-derived total lesion glycolysis predicts abscess formation in patients with surgically confirmed infective endocarditis: Results of a retrospective study at a tertiary center

    Get PDF
    Background Abnormal activity of 18F-FDG PET/CT is a major Duke criterion in the diagnostic work-up of infective prosthetic valve endocarditis (IE). We hypothesized that quantitative lesion assessment by 18F-FDG PET/CT-derived standard maximum uptake ratio (SURmax), metabolic volume (MV), and total lesion glycolysis (TLG) might be useful in distinct subgroups of IE patients (e.g. IE-related abscess formation). Methods All patients (n = 27) hospitalized in our tertiary IE referral medical center from January 2014 to October 2018 with preoperatively performed 18F-FDG PET/CT and surgically confirmed IE were included into this retrospective analysis. Results Patients with surgically confirmed abscess formation (n = 10) had significantly increased MV (by ~ fivefold) and TLG (by ~ sevenfold) as compared to patients without abscess (n = 17). Receiver operation characteristics (ROC) analyses demonstrated that TLG (calculated as MV × SURmean, i.e. TLG (SUR)) had the most favorable area under the ROC curve (0.841 [CI 0.659 to 1.000]) in predicting IE-related abscess formation. This resulted in a sensitivity of 80% and a specificity of 88% at a cut-off value of 14.14 mL for TLG (SUR). Conclusion We suggest that 18F-FDG PET/CT-derived quantitative assessment of TLG (SUR) may provide a novel diagnostic tool in predicting endocarditis-associated abscess formation

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Assessment of Lung Cancer Perfusion by Using Patlak Analysis: What Do We Measure?

    No full text

    Monitoring scanner calibration using the image-derived arterial blood SUV in whole-body FDG-PET

    No full text
    Abstract Background The current de facto standard for quantification of tumor metabolism in oncological whole-body PET is the standardized uptake value (SUV) approach. SUV determination requires accurate scanner calibration. Residual inaccuracies of the calibration lead to biased SUV values. Especially, this can adversely affect multicenter trials where it is difficult to ensure reliable cross-calibration across participating sites. The goal of the present work was the evaluation of a new method for monitoring scanner calibration utilizing the image-derived arterial blood SUV (BSUV) averaged over a sufficiently large number of whole-body FDG-PET investigations. Data of 681 patients from three sites which underwent routine 18F-FDG PET/CT or PET/MR were retrospectively analyzed. BSUV was determined in the descending aorta using a three-dimensional ROI concentric to the aorta’s centerline. The ROI was delineated in the CT or MRI images and transferred to the PET images. A minimum ROI volume of 5 mL and a concentric safety margin to the aortic wall was observed. Mean BSUV, standard deviation (SD), and standard error of the mean (SE) were computed for three groups of patients at each site, investigated 2 years apart, respectively, with group sizes between 53 and 100 patients. Differences of mean BSUV between the individual groups and sites were determined. Results SD (SE) of BSUV in the different groups ranged from 14.3 to 20.7% (1.7 to 2.8%). Differences of mean BSUV between intra-site groups were small (1.1–6.3%). Only one out of nine of these differences reached statistical significance. Inter-site differences were distinctly larger (12.6–25.1%) and highly significant (P<0.001). Conclusions Image-based determination of the group-averaged blood SUV in modestly large groups of whole-body FDG-PET investigations is a viable approach for ensuring consistent scanner calibration over time and across different sites. We propose this approach as a quality control and cross-calibration tool augmenting established phantom-based procedures

    Comparison of image quality and spatial resolution between ¹⁸F, ⁶⁸Ga, and ⁶⁴Cu phantom measurements using a digital Biograph Vision PET/CT

    No full text
    Background: PET nuclides can have a considerable influence on the spatial resolution and image quality of PET/CT scans, which can influence diagnostics in oncology, for example. The individual impact of the positron energy of ¹⁸F, ⁶⁸Ga, and ⁶⁴Cu on spatial resolution and image quality was compared for PET/CT scans acquired using a clinical, digital scanner. - Methods: A Jaszczak phantom and a NEMA PET body phantom were filled with ¹⁸F-FDG, ⁶⁸Ga-HCl, or ⁶⁴Cu-HCl, and PET/CT scans were performed on a Siemens Biograph Vision. Acquired images were analyzed regarding spatial resolution and image quality (recovery coefficients (RC), coefficient of variation within the background, contrast recovery coefficient (CRC), contrast–noise ratio (CNR), and relative count error in the lung insert). Data were compared between scans with different nuclides.- Results: We found that image quality was comparable between ¹⁸F-FDG and ⁶⁴Cu-HCl PET/CT measurements featuring similar maximal endpoint energies of the positrons. In comparison, RC, CRC, and CNR were degraded in ⁶⁸Ga-HCl data despite similar count rates. In particular, the two smallest spheres of 10 mm and 13 mm diameter revealed lower RC, CRC, and CNR values. The spatial resolution was similar between ¹⁸F-FDG and ⁶⁴Cu-HCl but up to 18% and 23% worse compared with PET/CT images of the NEMA PET body phantom filled with ⁶⁸Ga-HCl. - Conclusions: The positron energy of the PET nuclide influences the spatial resolution and image quality of a digital PET/CT scan. The image quality and spatial resolution of ⁶⁸Ga-HCl PET/CT images were worse than those of ¹⁸F-FDG or ⁶⁴Cu-HCl despite similar count rates

    A method for model-free partial volume correction in oncological PET

    Get PDF
    BACKGROUND: As is well known, limited spatial resolution leads to partial volume effects (PVE) and consequently to limited signal recovery. Determination of the mean activity concentration of a target structure is thus compromised even at target sizes much larger than the reconstructed spatial resolution. This leads to serious size-dependent underestimates of true signal intensity in hot spot imaging. For quantitative PET in general and in the context of therapy assessment in particular it is, therefore, mandatory to perform an adequate partial volume correction (PVC). The goal of our work was to develop and to validate a model-free PVC algorithm for hot spot imaging. METHODS: The algorithm proceeds in two automated steps. Step 1: estimation of the actual object boundary with a threshold based method and determination of the total activity A measured within the enclosed volume V. Step 2: determination of the activity fraction B, which is measured outside the object due to the partial volume effect (spill-out). The PVE corrected mean value is then given by C(mean) = (A+B)/V. For validation simulated tumours were used which were derived from real patient data (liver metastases of a colorectal carcinoma and head and neck cancer, respectively). The simulated tumours have characteristics (regarding tumour shape, contrast, noise, etc.) which are very similar to those of the underlying patient data, but the boundaries and tracer accumulation are exactly known. The PVE corrected mean values of 37 simulated tumours were determined and compared with the true mean values. RESULTS: For the investigated simulated data the proposed approach yields PVE corrected mean values which agree very well with the true values (mean deviation (± s.d.): (−0.8±2.5)%). CONCLUSIONS: The described method enables accurate quantitative partial volume correction in oncological hot spot imaging

    Interobserver variability of image-derived arterial blood SUV in whole-body FDG PET

    No full text
    Abstract Background Today, the standardized uptake value (SUV) is essentially the only means for quantitative evaluation of static [18F-]fluorodeoxyglucose (FDG) positron emission tomography (PET) investigations. However, the SUV approach has several well-known shortcomings which adversely affect the reliability of the SUV as a surrogate of the metabolic rate of glucose consumption. The standard uptake ratio (SUR), i.e., the uptake time-corrected ratio of tumor SUV to image-derived arterial blood SUV, has been shown in the first clinical studies to overcome most of these shortcomings, to decrease test-retest variability, and to increase the prognostic value in comparison to SUV. However, it is unclear, to what extent the SUR approach is vulnerable to observer variability of the additionally required blood SUV (BSUV) determination. The goal of the present work was the investigation of the interobserver variability of image-derived BSUV. Methods FDG PET/CT scans from 83 patients (72 male, 11 female) with non-small cell lung cancer (N = 46) or head and neck cancer (N = 37) were included. BSUV was determined by 8 individuals, each applying a dedicated delineation tool for the BSUV determination in the aorta. Two of the observers applied two further tools. Altogether, five different delineation tools were used. With each used tool, delineation was performed for the whole patient group, resulting in 12 distinct observations per patient. Intersubject variability of BSUV determination was assessed using the fractional deviations for the individual patients from the patient group average and was quantified as standard deviation (SD is ), 95% confidence interval, and range. Interobserver variability of BSUV determination was assessed using the fractional deviations of the individual observers from the observer-average for the considered patient and quantified as standard deviations (SD p , SD d ) or root mean square (RMS), 95% confidence interval, and range in each patient, each observer, and the pooled data respectively. Results Interobserver variability in the pooled data amounts to RMS = 2.8% and is much smaller than the intersubject variability of BSUV (SD is = 16%). Averaged over the whole patient group, deviations of individual observers from the observer average are very small and fall in the range [ − 0.96, 1.05]%. However, interobserver variability partly differs distinctly for different patients, covering a range of [0.7, 7.4]% in the investigated patient group. Conclusion The present investigation demonstrates that the image-based manual determination of BSUV in the aorta is sufficiently reproducible across different observers and delineation tools which is a prerequisite for accurate SUR determination. This finding is in line with the already demonstrated superior prognostic value of SUR in comparison to SUV in the first clinical studies
    corecore