10 research outputs found

    Inflammatory Responses and Barrier Function of Endothelial Cells Derived from Human Induced Pluripotent Stem Cells

    Get PDF
    Several studies have reported endothelial cell (EC) derivation from human induced pluripotent stem cells (hiPSCs). However, few have explored their functional properties in depth with respect to line-to-line and batch-to-batch variability and how they relate to primary ECs. We therefore carried out accurate characterization of hiPSC-derived ECs (hiPSC-ECs) from multiple (non-integrating) hiPSC lines and compared them with primary ECs in various functional assays, which included barrier function using real-time impedance spectroscopy with an integrated assay of electric wound healing, endothelia-leukocyte interaction under physiological flow to mimic inflammation and angiogenic responses in in vitro and in vivo assays. Overall, we found many similarities but also some important differences between hiPSC-derived and primary ECs. Assessment of vasculogenic responses in vivo showed little difference between primary ECs and hiPSC-ECs with regard to functional blood vessel formation, which may be important in future regenerative medicine applications requiring vascularization. In this article, Orlova and colleagues show that hiPSC-ECs have similar features to primary ECs but also show some differences. hiPSC-ECs exhibited higher barrier function, lower expression of pro-inflammatory adhesive receptors, and more stringent stromal cell requirements. Importantly, healthy control CD31+ hiPSC-ECs showed high consistency between different batches and lines, forming a good basis for disease modeling applications

    Quantitative Analysis of Intracellular Ca2+ Release and Contraction in hiPSC-Derived Vascular Smooth Muscle Cells

    No full text
    Summary: Vascular smooth muscle cells (vSMCs) are highly heterogeneous across different vascular beds. This is partly dictated by their developmental origin but also their position in the vascular tree, reflected in their differential responses to vasoactive agonists depending on which arteriolar or venular segment they are located. Functional assays are necessary to capture this heterogeneity in vitro since there are no markers that distinguish subtypes. Here we describe methods for determining real-time intracellular Ca2+ release and contraction in vSMCs of neural crest origin differentiated from human induced pluripotent stem cells using multiple protocols, and compare these with primary human brain vascular pericytes and smooth muscle cells. Open-source software was adapted for automated high-density analysis of Ca2+-release kinetics and contraction by tracking individual cells. Simultaneous measurements on hundreds of cells revealed heterogeneity in responses to vasoconstrictors that would likely be overlooked using manual low-throughput assays or marker expression. : In this article, Orlova and colleagues describe methods for real-time intracellular Ca2+ release and contraction in vascular smooth muscle cells differentiated from human induced pluripotent stem cells. Open-source software adapted for automated high-density analysis and simultaneous measurements of hundreds of cells revealed heterogeneity in responses to vasoconstrictors that would likely be overlooked using standard low-throughput assays or marker expression. Keywords: human induced pluripotent stem cells (hiPSCs), vascular smooth muscle cells (vSMCs), neural crest-derived vascular smooth muscle cells (NC-SMCs), real-time intracellular Ca2+ release in vSMCs, microfluidics, contraction, cell tracking, automated image analysis, CellProfiler, LC_Pro plugin for Image

    Genetic repair of a human induced pluripotent cell line from patient with Dutch-type cerebral amyloid angiopathy

    Get PDF
    Dutch-type cerebral amyloid angiopathy (D-CAA), also known as hereditary cerebral haemorrhage with amyloidosis-Dutch type (HCHWA-D), is an autosomal dominant disorder caused by a G to C transversion in codon 693 of the amyloid precursor protein (APP) that results in a Gln-to-Glu amino acid substitution. CRISPR-Cas9 editing was used for genetic correction of the mutation in a human induced pluripotent stem cell (hiPSC-) line established previously. The isogenic hiPSCs generated showed typical pluripotent stem cell morphology, expressed all markers of undifferentiated state, displayed a normal karyotype and had the capacity to differentiate into the three germ layers

    Three-Dimensional Vessels-on-a-Chip Based on hiPSC-derived Vascular Endothelial and Smooth Muscle Cells

    Get PDF
    Blood vessels are composed of endothelial cells (ECs) that form the inner vessel wall and mural cells that cover the ECs to mediate their stabilization. Crosstalk between ECs and VSMCs while the ECs undergo microfluidic flow is vital for the function and integrity of blood vessels. Here, we describe a protocol to generate three-dimensional (3D) engineered vessels-on-chip (VoCs) composed of vascular cells derived from human induced pluripotent stem cells (hiPSCs). We first describe protocols for robust differentiation of vascular smooth muscle cells (hiPSC-VSMCs) from hiPSCs that are effective across multiple hiPSC lines. Second, we describe the fabrication of a simple microfluidic device consisting of a single collagen lumen that can act as a cell scaffold and support fluid flow using the viscous finger patterning (VFP) technique. After the channel is seeded sequentially with hiPSC-derived ECs (hiPSC-ECs) and hiPSC-VSMCs, a stable EC barrier covered by VSMCs lines the collagen lumen. We demonstrate that this 3D VoC model can recapitulate physiological cell-cell interaction and can be perfused under physiological shear stress using a microfluidic pump. The uniform geometry of the vessel lumens allows precise control of flow dynamics. We have thus developed a robust protocol to generate an entirely isogenic hiPSC-derived 3D VoC model, which could be valuable for studying vessel barrier function and physiology in healthy or disease states

    Scalable microphysiological system to model three-dimensional blood vessels

    No full text
    Blood vessel models are increasingly recognized to have value in understanding disease and drug discovery. However, continued improvements are required to more accurately reflect human vessel physiology. Realistic three-dimensional (3D) in vitro cultures of human vascular cells inside microfluidic chips, or vessels-on-chips (VoC), could contribute to this since they can recapitulate aspects of the in vivo microenvironment by including mechanical stimuli such as shear stress. Here, we used human induced pluripotent stem cells as a source of endothelial cells (hiPSC-ECs), in combination with a technique called viscous finger patterning (VFP) toward this goal. We optimized VFP to create hollow structures in collagen I extracellular-matrix inside microfluidic chips. The lumen formation success rate was over 90% and the resulting cellularized lumens had a consistent diameter over their full length, averaging 336 +/- 15 mu m. Importantly, hiPSC-ECs cultured in these 3D microphysiological systems formed stable and viable vascular structures within 48 h. Furthermore, this system could support coculture of hiPSC-ECs with primary human brain vascular pericytes, demonstrating their ability to accommodate biologically relevant combinations of multiple vascular cell types. Our protocol for VFP is more robust than previously published methods with respect to success rates and reproducibility of the diameter between-and within channels. This, in combination with the ease of preparation, makes hiPSC-EC based VoC a low-cost platform for future studies in personalized disease modeling. (C) 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)

    Scalable microphysiological system to model three-dimensional blood vessels

    No full text
    Blood vessel models are increasingly recognized to have value in understanding disease and drug discovery. However, continued improvements are required to more accurately reflect human vessel physiology. Realistic three-dimensional (3D) in vitro cultures of human vascular cells inside microfluidic chips, or vessels-on-chips (VoC), could contribute to this since they can recapitulate aspects of the in vivo microenvironment by including mechanical stimuli such as shear stress. Here, we used human induced pluripotent stem cells as a source of endothelial cells (hiPSC-ECs), in combination with a technique called viscous finger patterning (VFP) toward this goal. We optimized VFP to create hollow structures in collagen I extracellular-matrix inside microfluidic chips. The lumen formation success rate was over 90% and the resulting cellularized lumens had a consistent diameter over their full length, averaging 336 +/- 15 mu m. Importantly, hiPSC-ECs cultured in these 3D microphysiological systems formed stable and viable vascular structures within 48 h. Furthermore, this system could support coculture of hiPSC-ECs with primary human brain vascular pericytes, demonstrating their ability to accommodate biologically relevant combinations of multiple vascular cell types. Our protocol for VFP is more robust than previously published methods with respect to success rates and reproducibility of the diameter between-and within channels. This, in combination with the ease of preparation, makes hiPSC-EC based VoC a low-cost platform for future studies in personalized disease modeling. (C) 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)

    Multiplexed fluidic circuit board for controlled perfusion of 3D blood vessels-on-a-chip

    Get PDF
    Three-dimensional (3D) blood vessels-on-a-chip (VoC) models integrate the biological complexity of vessel walls with dynamic microenvironmental cues, such as wall shear stress (WSS) and circumferential strain (CS). However, these parameters are difficult to control and are often poorly reproducible due to the high intrinsic diameter variation of individual 3D-VoCs. As a result, the throughput of current 3D systems is one-channel-at-a-time. Here, we developed a fluidic circuit board (FCB) for simultaneous perfusion of up to twelve 3D-VoCs using a single set of control parameters. By designing the internal hydraulic resistances in the FCB appropriately, it was possible to provide a pre-set WSS to all connected 3D-VoCs, despite significant variation in lumen diameters. Using this FCB, we found that variation of CS or WSS induce morphological changes to human induced pluripotent stem cell (hiPSC)-derived endothelial cells (ECs) and conclude that control of these parameters using a FCB is necessary to study 3D-VOCs

    Generation and genetic repair of 2 iPSC clones from a patient bearing a heterozygous c.1120del18 mutation in the ACVRL1 gene leading to Hereditary Hemorrhagic Telangiectasia (HHT) type 2

    Get PDF
    Fibroblasts from a patient carrying a heterozygous 18bp deletion in exon 8 of the ACVRL1 gene (c.1120del18) were reprogrammed using episomal vectors. The inframe deletion in ACVRL1 causes the loss of 6 amino acids of the protein, which is associated with Hereditary Hemorrhagic Telangiectasia (HHT) type 2 ). (Letteboer et al., 2005). CRISPR-Cas9 editing was used to genetically correct the mutation in the induced pluripotent stem cells (iPSCs). The top5-predicted off-target sites were not altered. Patient and isogenic iPSCs showed high pluripotent marker expression, in vitro differentiation capacity into all three germ layers and displayed a normal karyotype. The obtained isogenic pairs will enable proper in vitro disease modelling of HHT (Roman and Hinck, 2017).Stem cells & developmental biolog

    Generation, expansion and functional analysis of endothelial cells and pericytes derived from human pluripotent stem cells

    No full text
    Human endothelial cells (ECs) and pericytes are of great interest for research on vascular development and disease as well as future therapy. This protocol describes the efficient generation of ECs and pericytes from human pluripotent stem cells (hPSCs) under defined conditions. Essential steps for hPSC culture, differentiation, isolation and functional characterization of ECs and pericytes are described. Substantial numbers of both cell types can be derived in only 2-3 weeks: this involves differentiation (10 days), isolation (1 day) and 4 or 10 days expansion of ECs and pericytes, respectively. We also describe two assays for functional evaluation of hPSC-derived ECs: (i) primary vascular plexus formation upon co-culture with hPSC-derived pericytes and (ii) incorporation in the vasculature of zebrafish xenografts in vivo. These assays can be used to test the quality and drug sensitivity of hPSC-derived ECs and model vascular diseases with patient-derived hPSCs
    corecore