17 research outputs found

    Evaluating the use of an Unmanned Aerial Vehicle (UAV)-based active AirCore system to quantify methane emissions from dairy cows

    Get PDF
    Enteric fermentation and manure methane emissions from livestock are major anthropogenic greenhouse gas emissions. In general, direct measurements of farm-scale methane emissions are scarce due to the source complexity and the limitations of existing atmospheric sampling methods. Using an innovative UAV-based active AirCore system, we have performed accurate atmospheric measurements of CH4 mole fractions downwind of a dairy cow farm in the Netherlands on four individual days during the period from March 2017 to March 2019. The total CH4 emission rates from the farm were determined using the UAV-based mass balance approach to be 1.1-2.4 g/s. After subtracting estimated emission factors of manure onsite, we derived the enteric emission factors to be 0.20-0.51 kgCH4/AU/d (1 AU = 500 kg animal weight) of dairy cows. We show that the uncertainties of the estimates were dominated by the variabilities in the wind speed and the angle between the wind and the flight transect. Furthermore, nonsimultaneous sampling in the vertical direction of the plume is one of the main limiting factors to achieving accurate estimate of the CH4 emissions from the farm. In addition, a N2O tracer release experiment at the farm was performed when both a UAV and a mobile van were present to simultaneously sample the N2O tracer and the CH4 plumes from the farm, improving the source quantification with a correction factor of 1.04 and 1.22 for the inverse Gaussian approach and for the mass balance approach, respectively. The UAV-based active AirCore system is capable of providing useful estimates of CH4 emissions from dairy cow farms. The uncertainties of the estimates can be improved when combined with accurate measurements of local wind speed and direction or when combined with a tracer approach

    Instrument development and application in studies and monitoring of ambient ammonia, Atmos

    Get PDF
    Abstract During recent years, it has become clear that ammonia is an important gas in relation to di!erent environmental issues, such as acidi"cation, eutrophication, human health and climate change (through particle formation). Therefore, there is a growing need to develop and apply instrumentation suitable for research into emission, dispersion, conversion and deposition of ammonia and ammonium. Recently, several instruments were developed suitable for measuring concentrations in ambient conditions even at very low levels, such as ammonia sensors suitable for monitoring and research, deposition measuring systems and aerosol samplers for on-line measurement of aerosol composition. These instruments have been tested and applied in a number of "eld studies. These studies include dry deposition measurements, ammonium nitrate studies in relation to the (in)direct aerosol e!ect, emission studies and policy evaluation with concentration and deposition monitoring data. The policy evaluation study showed that the measures to reduce ammonia emissions were not as successful as projected beforehand by statistical studies

    Studying the spatial variability of methane flux with five eddy covariance towers of varying height

    Get PDF
    In this study, the spatial representativeness of eddy covariance (EC) methane (CH4) measurements was examined by comparing parallel CH4 fluxes from three short (6 m) towers separated by a few kilometres and from two higher levels (20 m and 60 m) at one location. The measurement campaign was held on an intensively managed grassland on peat soil in the Netherlands. The land use and land cover types are to a large degree homogeneous in the area. The CH4 fluxes exhibited significant variability between the sites on 30-min scale. The spatial coefficient of variation (CVspa) between the three short towers was 56% and it was of similar magnitude as the temporal variability, unlike for the other fluxes (friction velocity, sensible heat flux) for which the temporal variability was considerably larger than the spatial variability. The CVspa decreased with temporal averaging, although less than what could be expected for a purely random process (1/√N), and it was 14% for 26-day means of CH4 flux. This reflects the underlying heterogeneity of CH4 flux in the studied landscape at spatial scales ranging from 1 ha (flux footprint) to 10 km2 (area bounded by the short towers). This heterogeneity should be taken into account when interpreting and comparing EC measurements. On an annual scale, the flux spatial variability contributed up to 50% of the uncertainty in CH4 emissions. It was further tested whether EC flux measurements at higher levels could be used to acquire a more accurate estimate of the spatially integrated CH4 emissions. Contrarily to what was expected, flux intensity was found to both increase and decrease depending on measurement height. Using footprint modelling, 56% of the variation between 6 m and 60 m CH4 fluxes was attributed to emissions from local anthropogenic hotspots (farms). Furthermore, morning hours proved to be demanding for the tall tower EC where fluxes at 60 m were up to four-fold those at lower heights. These differences were connected with the onset of convective mixing during the morning period.Peer reviewe

    Methane flux measurements on multiple scales in an agricultural landscape: linking tall tower flux measurements with short eddy covariance towers

    Get PDF
    Agricultural landscapes exhibit spatially and temporally complex methane (CH4) fluxes: emissions originate from strong point sources, such as ruminants and cowsheds, and from fertilisation of fields, which adds short-term peaks in the methane flux to the atmosphere [1]. Furthermore, in some locations, such as the study site, these sources are overlaid on a CH4 flux originating from underlying peaty soils and drainage ditches between the fields [2]. In order to account for all these different sources, the CH4 fluxes need to be monitored continuously with a system that integrates the fluxes over a large area, providing the effective flux of CH4 from the landscape (~1 km2) to the atmosphere. Traditionally eddy covariance (EC) method has been used to obtain the ecosystem scale (~ 1 ha) fluxes of various compounds. However, it is questionable whether EC fluxes at one location can capture the high variability of CH4 fluxes in an agricultural landscape. To test this, methane exchange was measured at three locations with short (6.5 m high) EC towers a few kilometres apart from each other and at two heights (20 m and 60 m) in one tall tower. Additionally, it is assessed whether the short tower fluxes can be upscaled to match the CH4 fluxes measured at the tall tower using footprint modelling. The measurement campaign was held between the 1st and 25th of July 2012 in the vicinity of the Cabauw Experimental Site for Atmospheric Research (CESAR) (51°58’12.00”N, 4°55’34.48”E), which is located in the Netherlands. The landscape is an intensively managed agricultural area, with soil consisting of peat, topped by an approximately 1 meter thick bed of clay. Tentative results show large variability in CH4 fluxes between the three short tower sites: cumulative CH4 fluxes over a 10-day-period range from 188 mg(CH4) m-2 to 306 mg(CH4) m-2. Tall tower CH4 fluxes from the same period summed up to 275 mg(CH4) m-2 (20 m height) and 430 mg(CH4) m-2 (60 m height). High fluxes at 60 m height could be explained by cowsheds within the footprint, whereas systems located closer to the ground did not detect the hotspot emissions from the cowsheds. The presentation will discuss CH4 flux variability in an agricultural landscape, issues related to upscaling flux measurements and the usability of EC CH4 flux measurements at tall towers for estimating landscape scale exchange of methane. [1] P.S. Kroon et al., 2007, Biogeosciences, 4, 715-728. [2] A.P. Schrier-Uijl et al., 2010, Plant Soil, 329, 509-520

    Evaluating the performance of commonly used gas analysers for methane eddy covariance flux measurements: the InGOS inter-comparison field experiment

    Get PDF
    The performance of eight fast-response methane (CH4) gas analysers suitable for eddy covariance flux measurements were tested at a grassland site near the Cabauw tall tower (Netherlands) during June 2012. The instruments were positioned close to each other in order to minimise the effect of varying turbulent conditions. The moderate CH4 fluxes observed at the location, of the order of 25 nmol m−2 s−1, provided a suitable signal for testing the instruments' performance. Generally, all analysers tested were able to quantify the concentration fluctuations at the frequency range relevant for turbulent exchange and were able to deliver high-quality data. The tested cavity ringdown spectrometer (CRDS) instruments from Picarro, models G2311-f and G1301-f, were superior to other CH4 analysers with respect to instrumental noise. As an open-path instrument susceptible to the effects of rain, the LI-COR LI-7700 achieved lower data coverage and also required larger density corrections; however, the system is especially useful for remote sites that are restricted in power availability. In this study the open-path LI-7700 results were compromised due to a data acquisition problem in our data-logging setup. Some of the older closed-path analysers tested do not measure H2O concentrations alongside CH4 (i.e. FMA1 and DLT-100 by Los Gatos Research) and this complicates data processing since the required corrections for dilution and spectroscopic interactions have to be based on external information. To overcome this issue, we used H2O mole fractions measured by other gas analysers, adjusted them with different methods and then applied them to correct the CH4 fluxes. Following this procedure we estimated a bias of the order of 0.1 g (CH4) m−2 (8% of the measured mean flux) in the processed and corrected CH4 fluxes on a monthly scale due to missing H2O concentration measurements. Finally, cumulative CH4 fluxes over 14 days from three closed-path gas analysers, G2311-f (Picarro Inc.), FGGA (Los Gatos Research) and FMA2 (Los Gatos Research), which were measuring H2O concentrations in addition to CH4, agreed within 3% (355–367 mg (CH4) m−2) and were not clearly different from each other, whereas the other instruments derived total fluxes which showed small but distinct differences (±10%, 330–399 mg (CH4) m−2).Peer reviewe

    High potential for CH4 emission mitigation from oil infrastructure in one of EU's major production regions

    Get PDF
    Ambitious methane (CH4) emission mitigation represents one of the most effective opportunities to slow the rate of global warming over the next decades. The oil and gas (O&G) sector is a significant source of methane emissions, with technically feasible and cost-effective emission mitigation options. Romania, a key O&G producer within the EU, with the second highest reported annual CH4 emissions from the energy sector in the year 2020 (Greenhouse Gas Inventory Data - Comparison by Category, 2022), can play an important role towards the EU's emission reduction targets. In this study, we quantify CH4 emissions from onshore oil production sites in Romania at source and facility level using a combination of ground- and drone-based measurement techniques. Measured emissions were characterized by heavily skewed distributions, with 10% of the sites accounting for more than 70% of total emissions. Integrating the results from all site-level quantifications with different approaches, we derive a central estimate of 5.4 kg h-1 per site of CH4 (3.6 %-8.4 %, 95% confidence interval) for oil production sites. This estimate represents the third highest when compared to measurementbased estimates of similar facilities from other production regions. Based on our results, we estimate a total of 120 kt CH4 yr-1 (range: 79-180 kt yr-1) from oil production sites in our studied areas in Romania. This is approximately 2.5 times higher than the reported emissions from the entire Romanian oil production sector for 2020. Based on the source-level characterization, up to three-quarters of the detected emissions from oil production sites are related to operational venting. Our results suggest that O&G production infrastructure in Romania holds a massive mitigation potential, specifically by implementing measures to capture the gas and minimize operational venting and leaks

    Technical note: Interpretation of field observations of point-source methane plume using observation-driven large-eddy simulations

    No full text
    This study demonstrates the ability of large-eddy simulation (LES) forced by a large-scale model to reproduce plume dispersion in an actual field campaign. Our aim is to bring together field observations taken under non-ideal conditions and LES to show that this combination can help to derive point-source strengths from sparse observations. We analyze results from a single-day case study based on data collected near an oil well during the ROMEO campaign (ROmanian Methane Emissions from Oil and gas) that took place in October 2019. We set up our LES using boundary conditions derived from the meteorological reanalysis ERA5 and released a point source in line with the configuration in the field. The weather conditions produced by the LES show close agreement with field observations, although the observed wind field showed complex features due to the absence of synoptic forcing. In order to align the plume direction with field observations, we created a second simulation experiment with manipulated wind fields that better resemble the observations. Using these LESs, the estimated source strengths agree well with the emitted artificial tracer gas plume, indicating the suitability of LES to infer source strengths from observations under complex conditions. To further harvest the added value of LES, higher-order statistical moments of the simulated plume were analyzed. Here, we found good agreement with plumes from previous LES and laboratory experiments in channel flows. We derived a length scale of plume mixing from the boundary layer height, the mean wind speed and convective velocity scale. It was demonstrated that this length scale represents the distance from the source at which the predominant plume behavior transfers from meandering dispersion to relative dispersion

    Field comparison of two novel open-path instruments that measure dry deposition and emission of ammonia using flux-gradient and eddy covariance methods

    No full text
    Dry deposition of ammonia (NH3) is the largest contributor to the nitrogen deposition from the atmosphere to soil and vegetation in the Netherlands, causing eutrophication and loss of biodiversity; however, data sets of NH3 fluxes are sparse and in general have monthly resolution at best. An important reason for this is that measurement of the NH3 flux under dry conditions is notoriously difficult. There is no technique that can be considered as the gold standard for these measurements, which complicates the testing of new techniques. Here, we present the results of an intercomparison of two novel measurement set-ups aimed at measuring dry deposition of NH3 at half hourly resolution. Over a 5-week period, we operated two novel optical open-path techniques side by side at the Ruisdael station in Cabauw, the Netherlands: the RIVM-miniDOAS 2.2D using the aerodynamic gradient technique, and the commercial Healthy Photon HT8700E using the eddy covariance technique. These instruments are widely different in their measurement principle and approach to derive deposition values from measured concentrations; however, both techniques showed very similar results (r 0.87) and small differences in cumulative fluxes (∼10 %) as long as the upwind terrain was homogeneous and free of nearby obstacles. The observed fluxes varied from ∼-80 to ∼+140 ng NH3 m-2 s-1. Both the absolute flux values and the temporal patterns were highly similar, which substantiates that both instruments were able to measure NH3 fluxes at high temporal resolution. However, for wind directions with obstacles nearby, the correlations between the two techniques were weaker. The uptime of the miniDOAS system reached 100 % once operational, but regular intercalibration of the system was applied in this campaign (35 % of the 7-week uptime). Conversely, the HT8700E did not measure during and shortly after rain, and the coating of its mirrors tended to degrade (21 % data loss during the 5-week uptime). In addition, the NH3 concentrations measured by the HT8700E proved sensitive to air temperature, causing substantial differences (range: -15 to +6 μg m-3) between the two systems. To conclude, the miniDOAS system appears ready for long-term hands-off monitoring. The current HT8700E system, on the other hand, had a limited stand-alone operational time under the prevailing weather conditions. However, under relatively dry and low-dust conditions, the system can provide sound results, opening good prospects for future versions, also for monitoring applications. The new high temporal resolution data from these instruments can facilitate the study of processes behind NH3 dry deposition, allowing an improved understanding of these processes and better parameterisation in chemical transport models
    corecore