16 research outputs found

    Target actionability review to evaluate CDK4/6 as a therapeutic target in paediatric solid and brain tumours

    Get PDF
    BACKGROUND: Childhood cancer is still a leading cause of death around the world. To improve outcomes, there is an urgent need for tailored treatment. The systematic evaluation of existing preclinical data can provide an overview of what is known and identify gaps in the current knowledge. Here, we applied the target actionability review (TAR) methodology to assess the strength and weaknesses of available scientific literature on CDK4/6 as a therapeutic target in paediatric solid and brain tumours by structured critical appraisal. METHODS: Using relevant search terms in PubMed, a list of original publications investigating CDK4/6 in paediatric solid tumour types was identified based on relevancy criteria. Each publication was annotated for the tumour type and categorised into separate proof-of-concept (PoC) data modules. Based on rubrics, quality and experimental outcomes were scored independently by two reviewers. A third reviewer evaluated and adjudicated score discrepancies. Scores for each PoC module were averaged for each tumour type and visualised in a heatmap matrix in the publicly available R2 data portal. RESULTS AND CONCLUSIONS: This CDK4/6 TAR, generated by analysis of 151 data entries from 71 publications, showed frequent genomic aberrations of CDK4/6 in rhabdomyosarcoma, osteosarcoma, high-grade glioma, medulloblastoma, and neuroblastoma. However, a clear correlation between CDK4/6 aberrations and compound efficacy is not coming forth from the literature. Our analysis indicates that several paediatric indications would need (further) preclinical evaluation to allow for better recommendations, especially regarding the dependence of tumours on CDK4/6, predictive biomarkers, resistance mechanisms, and combination strategies. Nevertheless, our TAR heatmap provides support for the relevance of CDK4/6 inhibition in Ewing sarcoma, medulloblastoma, malignant peripheral nerve sheath tumour and to a lesser extent neuroblastoma, rhabdomyosarcoma, rhabdoid tumour and high-grade glioma. The interactive heatmap is accessible through R2 [r2platform.com/TAR/CDK4_6]

    Combined targeting of the p53 and pRb pathway in neuroblastoma does not lead to synergistic responses

    No full text
    BACKGROUND: Despite intensive treatment protocols and recent advances, neuroblastomas still account for approximately 15% of all childhood cancer deaths. In contrast with adult cancers, p53 pathway inactivation in neuroblastomas is rarely caused by p53 mutation but rather by altered MDM2 or p14ARF expression. Moreover, neuroblastomas are characterised by high proliferation rates, frequently triggered by pRb pathway dysfunction due to aberrant expression of cyclin D1, CDK4 or p16INK4a. Simultaneous disturbance of these pathways can occur via co-amplification of MDM2 and CDK4 or homozygous deletion of CDKN2A, which encodes both p14ARF and p16INK4a. METHODS AND RESULTS: We examined whether both single and combined inhibition of MDM2 and CDK4/6 is effective in reducing neuroblastoma cell viability. In our panel of ten cell lines with a spectrum of aberrations in the p53 and pRb pathway, idasanutlin and abemaciclib were the most potent MDM2 and CDK4/6 inhibitors, respectively. No correlation was observed between the genetic background and response to the single inhibitors. We confirmed this lack of correlation in isogenic systems overexpressing MDM2 and/or CDK4. In addition, combined inhibition did not result in synergistic effects. Instead, abemaciclib diminished the pro-apoptotic effect of idasanutlin, leading to slightly antagonistic effects. In vivo treatment with idasanutlin and abemaciclib led to reduced tumour growth compared with single drug treatment, but no synergistic response was observed. CONCLUSION: We conclude that p53 and pRb pathway aberrations cannot be used as predictive biomarkers for neuroblastoma sensitivity to MDM2 and/or CDK4/6 inhibitors. Moreover, we advise to be cautious with combining these inhibitors in neuroblastomas

    Combined targeting of the p53 and pRb pathway in neuroblastoma does not lead to synergistic responses

    Get PDF
    BACKGROUND: Despite intensive treatment protocols and recent advances, neuroblastomas still account for approximately 15% of all childhood cancer deaths. In contrast with adult cancers, p53 pathway inactivation in neuroblastomas is rarely caused by p53 mutation but rather by altered MDM2 or p14ARF expression. Moreover, neuroblastomas are characterised by high proliferation rates, frequently triggered by pRb pathway dysfunction due to aberrant expression of cyclin D1, CDK4 or p16INK4a. Simultaneous disturbance of these pathways can occur via co-amplification of MDM2 and CDK4 or homozygous deletion of CDKN2A, which encodes both p14ARF and p16INK4a. METHODS AND RESULTS: We examined whether both single and combined inhibition of MDM2 and CDK4/6 is effective in reducing neuroblastoma cell viability. In our panel of ten cell lines with a spectrum of aberrations in the p53 and pRb pathway, idasanutlin and abemaciclib were the most potent MDM2 and CDK4/6 inhibitors, respectively. No correlation was observed between the genetic background and response to the single inhibitors. We confirmed this lack of correlation in isogenic systems overexpressing MDM2 and/or CDK4. In addition, combined inhibition did not result in synergistic effects. Instead, abemaciclib diminished the pro-apoptotic effect of idasanutlin, leading to slightly antagonistic effects. In vivo treatment with idasanutlin and abemaciclib led to reduced tumour growth compared with single drug treatment, but no synergistic response was observed. CONCLUSION: We conclude that p53 and pRb pathway aberrations cannot be used as predictive biomarkers for neuroblastoma sensitivity to MDM2 and/or CDK4/6 inhibitors. Moreover, we advise to be cautious with combining these inhibitors in neuroblastomas

    Therapeutic vulnerabilities in the DNA damage response for the treatment of ATRX mutant neuroblastoma

    Get PDF
    Background In neuroblastoma, genetic alterations in ATRX, define a distinct poor outcome patient subgroup. Despite the need for new therapies, there is a lack of available models and a dearth of pre-clinical research. Methods To evaluate the impact of ATRX loss of function (LoF) in neuroblastoma, we utilized CRISPR-Cas9 gene editing to generate neuroblastoma cell lines isogenic for ATRX. We used these and other models to identify therapeutically exploitable synthetic lethal vulnerabilities associated with ATRX LoF. Findings In isogenic cell lines, we found that ATRX inactivation results in increased DNA damage, homologous recombination repair (HRR) defects and impaired replication fork processivity. In keeping with this, high-throughput compound screening showed selective sensitivity in ATRX mutant cells to multiple PARP inhibitors and the ATM inhibitor KU60019. ATRX mutant cells also showed selective sensitivity to the DNA damaging agents, sapacitabine and irinotecan. HRR deficiency was also seen in the ATRX deleted CHLA-90 cell line, and significant sensitivity demonstrated to olaparib/irinotecan combination therapy in all ATRX LoF models. In-vivo sensitivity to olaparib/irinotecan was seen in ATRX mutant but not wild-type xenografts. Finally, sustained responses to olaparib/irinotecan therapy were seen in an ATRX deleted neuroblastoma patient derived xenograft. Interpretation ATRX LoF results in specific DNA damage repair defects that can be therapeutically exploited. In ATRX LoF models, preclinical sensitivity is demonstrated to olaparib and irinotecan, a combination that can be rapidly translated into the clinic. Funding This work was supported by Christopher's Smile, Neuroblastoma UK, Cancer Research UK, and the Royal Marsden Hospital NIHR BRC

    The potential of PARP as a therapeutic target across pediatric solid malignancies

    No full text
    Abstract Background Pediatric cancer is the leading cause of disease-related death in children and the need for better therapeutic options remains urgent. Due to the limited number of patients, target and drug development for pediatrics is often supplemented by data from studies focused on adult cancers. Recent evidence shows that pediatric cancers possess different vulnerabilities that should be explored independently from adult cancers. Methods Using the publicly available Genomics of Drug Sensitivity in Cancer database, we explore therapeutic targets and biomarkers specific to the pediatric solid malignancies Ewing sarcoma, medulloblastoma, neuroblastoma, osteosarcoma, and rhabdomyosarcoma. Results are validated using cell viability assays and high-throughput drug screens are used to identify synergistic combinations. Results Using published drug screening data, PARP is identified as a drug target of interest across multiple different pediatric malignancies. We validate these findings, and we show that efficacy can be improved when combined with conventional chemotherapeutics, namely topoisomerase inhibitors. Additionally, using gene set enrichment analysis, we identify ribosome biogenesis as a potential biomarker for PARP inhibition in pediatric cancer cell lines. Conclusion Collectively, our results provide evidence to support the further development of PARP inhibition and the combination with TOP1 inhibition as a therapeutic approach in solid pediatric malignancies. Additionally, we propose ribosome biogenesis as a component to PARP inhibitor sensitivity that should be further investigated to help maximize the potential utility of PARP inhibition and combinations across pediatric solid malignancies

    Target actionability review to evaluate CDK4/6 as a therapeutic target in paediatric solid and brain tumours

    No full text
    Background: Childhood cancer is still a leading cause of death around the world. To improve outcomes, there is an urgent need for tailored treatment. The systematic evaluation of existing preclinical data can provide an overview of what is known and identify gaps in the current knowledge. Here, we applied the target actionability review (TAR) methodology to assess the strength and weaknesses of available scientific literature on CDK4/6 as a therapeutic target in paediatric solid and brain tumours by structured critical appraisal. Methods: Using relevant search terms in PubMed, a list of original publications investigating CDK4/6 in paediatric solid tumour types was identified based on relevancy criteria. Each publication was annotated for the tumour type and categorised into separate proof-of-concept (PoC) data modules. Based on rubrics, quality and experimental outcomes were scored independently by two reviewers. A third reviewer evaluated and adjudicated score discrepancies. Scores for each PoC module were averaged for each tumour type and visualised in a heatmap matrix in the publicly available R2 data portal. Results and conclusions: This CDK4/6 TAR, generated by analysis of 151 data entries from 71 publications, showed frequent genomic aberrations of CDK4/6 in rhabdomyosarcoma, osteosarcoma, high-grade glioma, medulloblastoma, and neuroblastoma. However, a clear correlation between CDK4/6 aberrations and compound efficacy is not coming forth from the literature. Our analysis indicates that several paediatric indications would need (further) preclinical evaluation to allow for better recommendations, especially regarding the dependence of tumours on CDK4/6, predictive biomarkers, resistance mechanisms, and combination strategies. Nevertheless, our TAR heatmap provides support for the relevance of CDK4/6 inhibition in Ewing sarcoma, medulloblastoma, malignant peripheral nerve sheath tumour and to a lesser extent neuroblastoma, rhabdomyosarcoma, rhabdoid tumour and high-grade glioma. The interactive heatmap is accessible through R2 [r2platform.com/TAR/CDK4_6]

    Defects in 8-oxo-guanine repair pathway cause high frequency of C > A substitutions in neuroblastoma

    Get PDF
    Neuroblastomas are childhood tumors with frequent fatal relapses after induction treatment, which is related to tumor evolution with additional genomic events. Our whole-genome sequencing data analysis revealed a high frequency of somatic cytosine > adenine (C > A) substitutions in primary neuroblastoma tumors, which was associated with poor survival. We showed that increased levels of C > A substitutions correlate with copy number loss (CNL) of OGG1 or MUTYH Both genes encode DNA glycosylases that recognize 8-oxo-guanine (8-oxoG) lesions as a first step of 8-oxoG repair. Tumor organoid models with CNL of OGG1 or MUTYH show increased 8-oxoG levels compared to wild-type cells. We used CRISPR-Cas9 genome editing to create knockout clones of MUTYH and OGG1 in neuroblastoma cells. Whole-genome sequencing of single-cell OGG1 and MUTYH knockout clones identified an increased accumulation of C > A substitutions. Mutational signature analysis of these OGG1 and MUTYH knockout clones revealed enrichment for C > A signatures 18 and 36, respectively. Clustering analysis showed that the knockout clones group together with tumors containing OGG1 or MUTYH CNL. In conclusion, we demonstrate that defects in 8-oxoG repair cause accumulation of C > A substitutions in neuroblastoma, which contributes to mutagenesis and tumor evolution

    Intronic SMCHD1 variants in FSHD : Testing the potential for CRISPR-Cas9 genome editing

    No full text
    Background Facioscapulohumeral dystrophy (FSHD) is associated with partial chromatin relaxation of the DUX4 retrogene containing D4Z4 macrosatellite repeats on chromosome 4, and transcriptional de-repression of DUX4 in skeletal muscle. The common form of FSHD, FSHD1, is caused by a D4Z4 repeat array contraction. The less common form, FSHD2, is generally caused by heterozygous variants in SMCHD1. Methods We employed whole exome sequencing combined with Sanger sequencing to screen uncharacterised FSHD2 patients for extra-exonic SMCHD1 mutations. We also used CRISPR-Cas9 genome editing to repair a pathogenic intronic SMCHD1 variant from patient myoblasts. Results We identified intronic SMCHD1 variants in two FSHD families. In the first family, an intronic variant resulted in partial intron retention and inclusion of the distal 14 nucleotides of intron 13 into the transcript. In the second family, a deep intronic variant in intron 34 resulted in exonisation of 53 nucleotides of intron 34. In both families, the aberrant transcripts are predicted to be non-functional. Deleting the pseudo-exon by CRISPR-Cas9 mediated genome editing in primary and immortalised myoblasts from the index case of the second family restored wild-type SMCHD1 expression to a level that resulted in efficient suppression of DUX4. Conclusions The estimated intronic mutation frequency of almost 2% in FSHD2, as exemplified by the two novel intronic SMCHD1 variants identified here, emphasises the importance of screening for intronic variants in SMCHD1. Furthermore, the efficient suppression of DUX4 after restoring SMCHD1 levels by genome editing of the mutant allele provides further guidance for therapeutic strategies

    Defects in 8-oxo-guanine repair pathway cause high frequency of C > A substitutions in neuroblastoma

    Get PDF
    Neuroblastomas are childhood tumors with frequent fatal relapses after induction treatment, which is related to tumor evolution with additional genomic events. Our whole-genome sequencing data analysis revealed a high frequency of somatic cytosine > adenine (C > A) substitutions in primary neuroblastoma tumors, which was associated with poor survival. We showed that increased levels of C > A substitutions correlate with copy number loss (CNL) of OGG1 or MUTYH Both genes encode DNA glycosylases that recognize 8-oxo-guanine (8-oxoG) lesions as a first step of 8-oxoG repair. Tumor organoid models with CNL of OGG1 or MUTYH show increased 8-oxoG levels compared to wild-type cells. We used CRISPR-Cas9 genome editing to create knockout clones of MUTYH and OGG1 in neuroblastoma cells. Whole-genome sequencing of single-cell OGG1 and MUTYH knockout clones identified an increased accumulation of C > A substitutions. Mutational signature analysis of these OGG1 and MUTYH knockout clones revealed enrichment for C > A signatures 18 and 36, respectively. Clustering analysis showed that the knockout clones group together with tumors containing OGG1 or MUTYH CNL. In conclusion, we demonstrate that defects in 8-oxoG repair cause accumulation of C > A substitutions in neuroblastoma, which contributes to mutagenesis and tumor evolution
    corecore