43 research outputs found

    Histological evaluation disqualifies IMT and calcification scores as surrogates for grading coronary and aortic atherosclerosis

    Get PDF
    __Background/objectives__ Carotid intimal media thickness (IMT) and coronary calcium scores (CCS) are thought to reflect atherosclerotic burden. The validity of this assumption for IMT is challenged by recent meta-analyses; for CCS by absence of a relationship between negative scores, and freedom of future events. As such, we considered evaluation of the relationship between tissue IMT and CCS, and extend of atherosclerotic disease relevant. __Methods__ Analyses were performed on donor aortas obtained during renal graft procurement, and on coronary arteries collected during heart valve procurement for tissue donation. Movat pentachrome and Hematoxylin staining was performed, and the degree of atherosclerosis histologically graded. IMT and presence of calcium deposits were quantified on graded tissue sections. __Results__ 304 aortas and 185 coronary arteries covering the full atherosclerotic spectrum were evaluated. Aortas and coronaries showed similar relationships between tissue IMT and degree of atherosclerosis, with gradual increase in tissue IMT during earlier phases of atherosclerosis (r = 0.68 and r = 0.30, P < 0.00001 for aorta and coronaries respectively), followed by plateauing of the curve in intermediate and advanced stages. Results for tissue IMT reveal high variability, resulting in wide confidence intervals. Results for CCS are similar for aorta and coronaries, with calcium depositions limited to advanced lesions. __Conclusions__ Histological IMT measurements for the aorta and coronaries show large variations around the trend and plateauing of, and possibly reductions in IMT in late stage atherosclerotic disease. These observations for the aorta and coronaries may (partly) explain the limited benefit of including carotid IMT in risk prediction algorithms

    Analyse der Tätigkeiten kardiovaskulärer Gewebebanken in Deutschland in den Jahren 2007 bis 2010

    Get PDF
    __Background:__ Especially in complicated aortic valve endocarditis, infections of the aorta by mycotic aortic aneurysms and prosthetic infections, or as part of the Ross procedure, the use of allogeneic heart valve transplants remains important. The production of such allografts in Germany is the task of cardiovascular tissue banks (CVTB). __Materials and methods:__ During an analysis of the years 2007-2010, basic data on donor numbers, production, and distribution as well as the technical conditions of not only the four participating CVTB (Bad Oeynhausen, Berlin, Kiel, Munich) but also data from the CVTB Rotterdam as an external reference were recorded. __Results:__ The German CVTB delivered an average of 44 aortic and 95 pulmonary allografts per year to clinical users. By incorporating the annually imported valve allografts, the demand in Germany approximately averages 220 heart valve allografts per year. The heart tissue was harvested from approximately 100 multiorgan donors, 45 cardiovascular deaths, and 80 domino donors annually. __Discussion:__ The participating cardiovascular tissue banks have comparable technical and administrative requirements and are able to produce tissue preparations according to the rules of Good Professional Practice in accordance with § 3 (3) AMWHV to assess their quality, whereby harmonization of microbiological monitoring and antibiotic treatment is still necessary

    Sheep-Specific Immunohistochemical Panel for the Evaluation of Regenerative and Inflammatory Processes in Tissue-Engineered Heart Valves

    Get PDF
    The creation of living heart valve replacements via tissue engineering is actively being pursued by many research groups. Numerous strategies have been described, aimed either at culturing autologous living valves in a bioreactor (in vitro) or inducing endogenous regeneration by the host via resorbable scaffolds (in situ). Whereas a lot of effort is being invested in the optimization of heart valve scaffold parameters and culturing conditions, the pathophysiological in vivo remodeling processes to which tissue-engineered heart valves are subjected upon implantation have been largely under-investigated. This is partly due to the unavailability of suitable immunohistochemical tools specific to sheep, which serves as the gold standard animal model in translational research on heart valve replacements. Therefore, the goal of this study was to comprise and validate a comprehensive sheep-specific panel of antibodies for the immunohistochemical analysis of tissue-engineered heart valve explants. For the selection of our panel we took inspiration from previous histopathological studies describing the morphology, extracellular matrix composition and cellular composition of native human heart valves throughout development and adult stages. Moreover, we included a range of immunological markers, which are particularly relevant to assess the host inflammatory response evoked by the implanted heart valve. The markers specifically identifying extracellular matrix components and cell phenotypes were tested on formalin-fixed paraffin-embedded sections of native sheep aortic valves. Markers for inflammation and apoptosis were tested on ovine spleen and kidney tissues. Taken together, this panel of antibodies could serve as a tool to study the spatiotemporal expression of proteins in remodeling tissue-engineered heart valves after implantation in a sheep model, thereby contributing to our understanding of the in vivo processes which ultimately determine long-term success or failure of tissue-engineered heart valves

    High proportion of genetic cases in patients with advanced cardiomyopathy including a novel homozygous Plakophilin 2-gene mutation

    Get PDF
    Cardiomyopathies might lead to end-stage heart disease with the requirement of drastic treatments like bridging up to transplant or heart transplantation. A not precisely known proportion of these diseases are genetically determined. We genotyped 43 index-patients (30 DCM, 10 ARVC, 3 RCM) with advanced or end stage cardiomyopathy using a gene panel which covered 46 known cardiomyopathy disease genes. Fifty-three variants with possible impact on disease in 33 patients were identified. Of these 27 (51%) were classified as likely pathogenic or pathogenic in the MYH7, MYL2, MYL3, NEXN, TNNC1, TNNI3, DES, LMNA, PKP2, PLN, RBM20, TTN, and CRYAB genes. Fifty-six percent (n = 24) of index-patients carried a likely pathogenic or pathogenic mutation. Of these 75% (n = 18) were familial and 25% (n = 6) sporadic cases. However, severe cardiomyopathy seemed to be not characterized by a specific mutation profile. Remarkably, we identified a novel homozygous PKP2-missense variant in a large consanguineous family with sudden death in early childhood and several members with heart transplantation in adolescent age

    La trigonometría como herramienta para medir nuestro entorno

    Get PDF
    En esta experiencia de aula se presenta el trabajo de un grupo de estudiantes de grado décimo que realizaron una actividad en la clase de trigonometría en la que aplicaron conceptos trigonométricos para calcular las medidas de las instalaciones de la institución educativa a la cual pertenecen. El objetivo es mostrar un ejemplo de cómo se puede generar un ambiente de aprendizaje en el que los estudiantes puedan elaborar significados de objetos matemáticos como lo son las razones trigonométricas mediante una labor que permita la aplicación fundamental de la trigonometría realizando mediciones indirectas

    Characterization of binding, functional activity, and contractile responses of the selective 5-HT1F receptor agonist lasmiditan

    Get PDF
    Background and Purpose: Triptans are 5-HT1B/1D receptor agonists (that also display 5-HT1F receptor affinity) with antimigraine action, contraindicated in patients with coronary artery disease due to their vasoconstrictor properties. Conversely, lasmiditan was developed as an antimigraine 5-HT1F receptor agonist. To assess the selectivity and cardiovascular effects of lasmiditan, we investigated the binding, functional activity, and in vitro/in vivo vascular effects of lasmiditan and compared it to sumatriptan. Experimental Approach: Binding and second messenger activity assays of lasmiditan and other serotoninergic agonists were performed for human 5-HT1A, 5-HT1B, 5-HT1D, 5-ht1E, 5-HT1F, 5-HT2A, 5-HT2B, and 5-HT7 receptors, and the results were correlated with their potency to constrict isolated human coronary arteries (HCAs). Furthermore, concentration–response curves to lasmiditan and sumatriptan were performed in proximal and distal HCA, internal mammary, and middle meningeal arteries. Finally, anaesthetized female beagle dogs received i.v. infusions of lasmiditan or sumatriptan in escalating cumulative doses, and carotid and coronary artery diameters were measured. Key Results: Lasmiditan showed high selectivity for 5-HT1F receptors. Moreover, the functional potency of the analysed compounds to inhibit cAMP increase through 5-HT1B receptor activation positively correlated with their potency to contract HCA. In isolated human arteries, sumatriptan, but not lasmiditan, induced contractions. Likewise, in vivo, sumatriptan decreased coronary and carotid artery diameters at clinically relevant doses, while lasmiditan was devoid of vasoconstrictor activity at all doses tested. Conclusions and Implications: Lasmiditan is a selective 5-HT1F receptor agonist devoid of vasoconstrictor activity. This may represent a cardiovascular safety advantage when compared to the triptans

    Expression profile of proteins involved in scar formation in the healing process of full-thickness excisional wounds in the porcine model

    No full text
    Scar formation in deep dermal wounds is associated with excessive collagen deposition and contraction. Increased collagen synthesis and decreased collagen degradation are the mechanisms through which this form of fibrosis can occur. Another factor might be a different kind of collagen cross-linking seen in fibrotic skin diseases. This type of cross-linking is dependent on the enzyme lysyl hydroxylase-2b. In this study, we examined the expression profile of the potential key players in scar formation in time in healing of acute wounds. Collagen types I and III, lysyl hydroxylase-2b, α-smooth muscle actin, transforming growth factor βs, and the matrix metalloproteinases and their inhibitor mRNA levels were determined. All genes examined show distinct expression patterns over time. The expression of lysyl hydroxylase-2b peaks at day 7, and precedes collagen types I and III expression. Eight weeks after wounding, the scars showed an increased level of lysyl hydroxylase-2b-mediated collagen cross-linking. This study shows that the fibrosis-specific type of cross-linking of collagen seen in human hypertrophic scarring also plays a role in this animal model of wound healing. Moreover, the expression of the putative gene responsible for this type of cross-linking, the lysyl hydroxylase-2b, is elevated during wound healing

    Sheep-Specific Immunohistochemical Panel for the Evaluation of Regenerative and Inflammatory Processes in Tissue-Engineered Heart Valves

    No full text
    The creation of living heart valve replacements via tissue engineering is actively being pursued by many research groups. Numerous strategies have been described, aimed either at culturing autologous living valves in a bioreactor (in vitro) or inducing endogenous regeneration by the host via resorbable scaffolds (in situ). Whereas a lot of effort is being invested in the optimization of heart valve scaffold parameters and culturing conditions, the pathophysiological in vivo remodeling processes to which tissue-engineered heart valves are subjected upon implantation have been largely under-investigated. This is partly due to the unavailability of suitable immunohistochemical tools specific to sheep, which serves as the gold standard animal model in translational research on heart valve replacements. Therefore, the goal of this study was to comprise and validate a comprehensive sheep-specific panel of antibodies for the immunohistochemical analysis of tissue-engineered heart valve explants. For the selection of our panel we took inspiration from previous histopathological studies describing the morphology, extracellular matrix composition and cellular composition of native human heart valves throughout development and adult stages. Moreover, we included a range of immunological markers, which are particularly relevant to assess the host inflammatory response evoked by the implanted heart valve. The markers specifically identifying extracellular matrix components and cell phenotypes were tested on formalin-fixed paraffin-embedded sections of native sheep aortic valves. Markers for inflammation and apoptosis were tested on ovine spleen and kidney tissues. Taken together, this panel of antibodies could serve as a tool to study the spatiotemporal expression of proteins in remodeling tissue-engineered heart valves after implantation in a sheep model, thereby contributing to our understanding of the in vivo processes which ultimately determine long-term success or failure of tissue-engineered heart valves

    Sheep-specific immunohistochemical panel for the evaluation of regenerative and inflammatory processes in tissue-engineered heart valves

    Get PDF
    \u3cp\u3eThe creation of living heart valve replacements via tissue engineering is actively being pursued by many research groups. Numerous strategies have been described, aimed either at culturing autologous living valves in a bioreactor (in vitro) or inducing endogenous regeneration by the host via resorbable scaffolds (in situ). Whereas a lot of effort is being invested in the optimization of heart valve scaffold parameters and culturing conditions, the pathophysiological in vivo remodeling processes to which tissue-engineered heart valves are subjected upon implantation have been largely under-investigated. This is partly due to the unavailability of suitable immunohistochemical tools specific to sheep, which serves as the gold standard animal model in translational research on heart valve replacements. Therefore, the goal of this study was to comprise and validate a comprehensive sheep-specific panel of antibodies for the immunohistochemical analysis of tissue-engineered heart valve explants. For the selection of our panel we took inspiration from previous histopathological studies describing the morphology, extracellular matrix composition and cellular composition of native human heart valves throughout development and adult stages. Moreover, we included a range of immunological markers, which are particularly relevant to assess the host inflammatory response evoked by the implanted heart valve. The markers specifically identifying extracellular matrix components and cell phenotypes were tested on formalin-fixed paraffin-embedded sections of native sheep aortic valves. Markers for inflammation and apoptosis were tested on ovine spleen and kidney tissues. Taken together, this panel of antibodies could serve as a tool to study the spatiotemporal expression of proteins in remodeling tissue-engineered heart valves after implantation in a sheep model, thereby contributing to our understanding of the in vivo processes which ultimately determine long-term success or failure of tissue-engineered heart valves.\u3c/p\u3
    corecore