11 research outputs found

    Selective cancer-germline gene expression in pediatric brain tumors

    Get PDF
    Cancer-germline genes (CGGs) code for immunogenic antigens that are present in various human tumors and can be targeted by immunotherapy. Their expression has been studied in a wide range of human tumors in adults. We measured the expression of 12 CGGs in pediatric brain tumors, to identify targets for therapeutic cancer vaccines. Real Time PCR was used to quantify the expression of genes MAGE-A1, MAGE-A2, MAGE-A3, MAGE-A4, MAGE-A6, MAGE-A10, MAGE-A12, MAGE-C2, NY-ESO-1 and GAGE-1,2,8 in 50 pediatric brain tumors of different histological subtypes. Protein expression was examined with immunohistochemistry. Fifty-five percent of the medulloblastomas (n = 11), 86% of the ependymomas (n = 7), 40% of the choroid plexus tumors (n = 5) and 67% of astrocytic tumors (n = 27) expressed one or more CGGs. Immunohistochemical analysis confirmed qPCR results. With exception of a minority of tumors, the overall level of CGG expression in pediatric brain tumors was low. We observed a high expression of at least one CGG in 32% of the samples. CGG-encoded antigens are therefore suitable targets in a very selected group of pediatric patients with a brain tumor. Interestingly, glioblastomas from adult patients expressed CGGs more often and at significantly higher levels compared to pediatric glioblastomas. This observation is in line with the notion that pediatric and adult glioblastomas develop along different genetic pathways

    Maturation of monocyte-derived dendritic cells with Toll-like receptor 3 and 7/8 ligands combined with prostaglandin E2 results in high interleukin-12 production and cell migration

    Get PDF
    Dendritic cells (DC) are professional antigen-presenting cells of the immune system that play a key role in regulating T cell-based immunity. In vivo, the capacity of DC to activate T cells depends on their ability to migrate to the T cell areas of lymph nodes as well as on their maturation state. Depending on their cytokine-secreting profile, DC are able to skew the immune response in a specific direction. In particular, IL-12p70 producing DC drive T cells towards a T helper 1 type response. A serious disadvantage of current clinical grade ex vivo generated monocyte-derived DC is the poor IL-12p70 production. We have investigated the effects of Toll-like receptor (TLR)-mediated maturation on ex vivo generated human monocyte-derived DC. We demonstrate that in contrast to cytokine-matured DC, DC matured with poly(I:C) (TLR3 ligand) and/or R848 (TLR7/8 ligand) are able to produce vast amounts of IL-12p70, but exhibit a reduced migratory capacity. The addition of prostaglandin E2 (PGE2) improved the migratory capacity of TLR-ligand matured DC while maintaining their IL-12p70 production upon T cell encounter. We propose a novel clinical grade maturation protocol in which TLR ligands poly(I:C) and R848 are combined with PGE2 to generate DC with both high migratory capacity and IL-12p70 production upon T cell encounter

    Immunogenicity of dendritic cells pulsed with CEA peptide or transfected with CEA mRNA for vaccination of colorectal cancer patients

    No full text
    Dendritic cells (DCs) are the professional antigen-presenting cells of the immune system. We have demonstrated that vaccination of autologous ex vivo cultured DCs results in the induction of tumor-specific immune responses in cancer patients, which correlates with clinical response. Optimization of antigen loading is one of the possibilities for further improving the efficacy of DC vaccination. Theoretically, transfection of DCs with RNA encoding a tumor-specific antigen may induce a broader immune response as compared to the most widely used technique of peptide pulsing. In this clinical study, RNA transfection was compared with peptide pulsing as an antigen loading strategy for DC vaccination. Patients with resectable liver metastases of colorectal cancer were vaccinated intravenously and intradermally 3 times weekly with either carcinoembryogenic antigen (CEA)-derived HLA-A2 binding peptide-loaded or CEA mRNA electroporated DCs prior to surgical resection of the metastases. All DCs were loaded with keyhole limpet hemocyanin (KLH) as a control protein. Evaluation of vaccine-induced immune reactivity consisted of T-cell proliferative responses and B-cell antibody responses against KLH in peripheral blood. CEA reactivity was determined in T-cell cultures of biopsies of post-treatment delayed type hypersensitivity skin tests. Sixteen patients were included. All patients showed T-cell responses against KLH upon vaccination. CEA peptide-specific T-cells were detected in 8 out of 11 patients in the peptide group, but in none of the 5 patients in the RNA group. In our study, DC CEA mRNA transfection was not superior to DC CEA peptide pulsing in the induction of a tumor-specific immune response in colorectal cancer patient

    Targeting of 111In-Labeled Dendritic Cell Human Vaccines Improved by Reducing Number of Cells

    Get PDF
    Item does not contain fulltextPURPOSE: Anticancer dendritic cell (DC) vaccines require the DCs to relocate to lymph nodes (LN) to trigger immune responses. However, these migration rates are typically very poor. Improving the targeting of ex vivo generated DCs to LNs might increase vaccine efficacy and reduce costs. We investigated DC migration in vivo in humans under different conditions. EXPERIMENTAL DESIGN: HLA-A*02:01 patients with melanoma were vaccinated with mature DCs loaded with tyrosinase and gp100 peptides together with keyhole limpet hemocyanin (NCT00243594). For this study, patients received an additional intradermal vaccination with 111In-labeled mature DCs. The injection site was pretreated with nonloaded, activated DCs, TNFalpha, or Imiquimod; granulocyte macrophage colony-stimulating factor was coinjected or smaller numbers of DCs were injected. Migration was measured by scintigraphy and compared with an intrapatient control vaccination. In an ex vivo tissue model, we measured CCL21-directed migration of 19F-labeled DCs over a period of up to 12 hours using 19F MRI to supplement our patient data. RESULTS: Pretreatment of the injection site induced local inflammatory reactions but did not improve migration rates. Both in vitro and in vivo, reduction of cell numbers to 5 x 106 or less cells per injection improved migration. Furthermore, scintigraphy is insufficient to study migration of such small numbers of 111In-labeled DCs in vivo. CONCLUSION: Reduction of cell density, not pretreatment of the injection site, is crucial for improved migration of DCs to LNs in vivo. Clin Cancer Res; 19(6); 1525-33. (c)2013 AACR

    Route of administration modulates the induction of dendritic cell vaccine-induced antigen-specific T cells in advanced melanoma patients

    No full text
    Contains fulltext : 96310.pdf (publisher's version ) (Closed access)PURPOSE: It is unknown whether the route of administration influences dendritic cell (DC)-based immunotherapy. We compared the effect of intradermal versus intranodal administration of a DC vaccine on induction of immunologic responses in melanoma patients and examined whether concomitant administration of interleukin (IL)-2 increases the efficacy of the DC vaccine. EXPERIMENTAL DESIGN: HLA-A2.1(+) melanoma patients scheduled for regional lymph node dissection were vaccinated four times biweekly via intradermal or intranodal injection with 12 x 10 to 17 x 10 mature DCs loaded with tyrosinase and gp100 peptides together with keyhole limpet hemocyanin (KLH). Half of the patients also received low-dose IL-2 (9 MIU daily for 7 days starting 3 days after each vaccination). KLH-specific B- and T-cell responses were monitored in blood. gp100- and tyrosinase-specific T-cell responses were monitored in blood by tetramer analysis and in biopsies from delayed-type hypersensitivity (DTH) skin tests by tetramer and functional analyses with (51)Cr release assays or IFNgamma release, following coculture with peptide-pulsed T2 cells or gp100- or tyrosinase-expressing tumor cells. RESULTS: In 19 of 43 vaccinated patients, functional tumor antigen-specific T cells could be detected. Although significantly more DCs migrated to adjacent lymph nodes upon intranodal vaccination, this was also highly variable with a complete absence of migration in 7 of 24 intranodally vaccinated patients. Intradermal vaccinations proved superior in inducing functional tumor antigen-specific T cells. Coadministration of IL-2 did not further augment the antigen-specific T-cell response but did result in higher regulatory T-cell frequencies. CONCLUSION: Intradermal vaccination resulted in superior antitumor T-cell induction when compared with intranodal vaccination. No advantage of additional IL-2 treatment could be shown

    Intranodal vaccination with mRNA-optimized dendritic cells in metastatic melanoma patients

    No full text
    Autologous dendritic cell (DC) therapy is an experimental cellular immunotherapy that is safe and immunogenic in patients with advanced melanoma. In an attempt to further improve the therapeutic responses, we treated 15 patients with melanoma, with autologous monocyte-derived immature DC electroporated with mRNA encoding CD40 ligand (CD40L), CD70 and a constitutively active TLR4 (caTLR4) together with mRNA encoding a tumor-associated antigen (TAA; respectively gp100 or tyrosinase). In addition, DC were pulsed with keyhole limpet hemocyanin (KLH) that served as a control antigen. Production of this DC vaccine with high cellular viability, high expression of co-stimulatory molecules and MHC class I and II and production of IL-12p70, was feasible in all patients. A vaccination cycle consisting of three vaccinations with up to 15×10(6) DC per vaccination at a biweekly interval, was repeated after 6 and 12 months in the absence of disease progression. mRNA-optimized DC were injected intranodally, because of low CCR7 expression on the DC, and induced de novo immune responses against control antigen. T cell responses against tyrosinase were detected in the skin-test infiltrating lymphocytes (SKIL) of two patients. One mixed tumor response and two durable tumor stabilizations were observed among 8 patients with evaluable disease at baseline. In conclusion, autologous mRNA-optimized DC can be safely administered intranodally to patients with metastatic melanoma but showed limited immunological responses against tyrosinase and gp10

    Adjuvant dendritic cell vaccination induces tumor-specific immune responses in the majority of stage III melanoma patients

    No full text
    Purpose: To determine the effectiveness of adjuvant dendritic cell (DC) vaccination to induce tumor-specific immunological responses in stage III melanoma patients. Experimental design: Retrospective analysis of stage III melanoma patients, vaccinated with autologous monocyte-derived DC loaded with tumor-associated antigens (TAA) gp100 and tyrosinase after radical lymph node dissection. Skin-test infiltrating lymphocytes (SKILs) obtained from delayed-type hypersensitivity skin-test biopsies were analyzed for the presence of TAA-specific CD8(+) T cells by tetrameric MHC-peptide complexes and by functional TAA-specific T cell assays, defined by peptide-recognition (T2 cells) and/or tumor-recognition (BLM and/or MEL624) with specific production of Th1 cytokines and no Th2 cytokines. Results: Ninety-seven patients were analyzed: 21 with stage IIIA, 34 with stage IIIB, and 42 had stage IIIC disease. Tetramer-positive CD8(+) T cells were present in 68 patients (70%), and 24 of them showed a response against all 3 epitopes tested (gp100: 154-162, gp100: 280-288, and tyrosinase: 369-377) at any point during vaccinations. A functional T cell response was found in 62 patients (64%). Rates of peptide-recognition of gp100: 154-162, gp100: 280-288, and tyrosinase: 369-377 were 40%, 29%, and 45%, respectively. Median recurrence-free survival and distant metastasis-free survival of the whole study population were 23.0 mo and 36.8 mo, respectively. Conclusions: DC vaccination induces a functional TAA-specific T cell response in the majority of stage III melanoma patients, indicating it is more effective in stage III than in stage IV melanoma patients. Furthermore, performing multiple cycles of vaccinations enhances the chance of a broader immune respons

    Prophylactic vaccines are potent activators of monocyte-derived dendritic cells and drive effective anti-tumor responses in melanoma patients at the cost of toxicity

    No full text
    Dendritic cell (DC)-based immunotherapy is explored worldwide in cancer patients, predominantly with DC matured with pro-inflammatory cytokines and prostaglandin E2. We studied the safety and efficacy of vaccination with monocyte-derived DC matured with a cocktail of prophylactic vaccines that contain clinical-grade Toll-like receptor ligands (BCG, Typhim, Act-HIB) and prostaglandin E2 (VAC-DC). Stage III and IV melanoma patients were vaccinated via intranodal injection (12 patients) or combined intradermal/intravenous injection (16 patients) with VAC-DC loaded with keyhole limpet hemocyanin (KLH) and mRNA encoding tumor antigens gp100 and tyrosinase. Tumor antigen-specific T cell responses were monitored in blood and skin-test infiltrating-lymphocyte cultures. Almost all patients mounted prophylactic vaccine- or KLH-specific immune responses. Both after intranodal injection and after intradermal/intravenous injection, tumor antigen-specific immune responses were detected, which coincide with longer overall survival in stage IV melanoma patients. VAC-DC induce local and systemic CTC grade 2 and 3 toxicity, which is most likely caused by BCG in the maturation cocktail. The side effects were self-limiting or resolved upon a short period of systemic steroid therapy. We conclude that VAC-DC can induce functional tumor-specific responses. Unfortunately, toxicity observed after vaccination precludes the general application of VAC-DC, since in DC maturated with prophylactic vaccines BCG appears to be essential in the maturation cocktai

    Effective Clinical Responses in Metastatic Melanoma Patients after Vaccination with Primary Myeloid Dendritic Cells

    No full text
    Thus far, dendritic cell (DC)-based immunotherapy of cancer was primarily based on in vitro-generated monocyte-derived DCs, which require extensive in vitro manipulation. Here, we report on a clinical study exploiting primary CD1c(+) myeloid DCs, naturally circulating in the blood. Fourteen stage IV melanoma patients, without previous systemic treatment for metastatic disease, received autologous CD1c(+) myeloid DCs, activated by only brief (16 hours) ex vivo culture and loaded with tumor-associated antigens of tyrosinase and gp100. Our results show that therapeutic vaccination against melanoma with small amounts (3-10 × 10(6)) of myeloid DCs is feasible and without substantial toxicity. Four of 14 patients showed long-term progression-free survival (12-35 months), which directly correlated with the development of multifunctional CD8(+) T-cell responses in three of these patients. In particular, high CD107a expression, indicative for cytolytic activity, and IFNγ as well as TNFα and CCL4 production was observed. Apparently, these T-cell responses are essential to induce tumor regression and promote long-term survival by stalling tumor growth. We show that vaccination of metastatic melanoma patients with primary myeloid DCs is feasible and safe and results in induction of effective antitumor immune responses that coincide with improved progression-free survival. Clin Cancer Res; 22(9); 2155-66. ©2015 AAC

    Adjuvant dendritic cell therapy in stage IIIB/C melanoma: the MIND-DC randomized phase III trial

    Get PDF
    Abstract Autologous natural dendritic cells (nDCs) treatment can induce tumor-specific immune responses and clinical responses in cancer patients. In this phase III clinical trial (NCT02993315), 148 patients with resected stage IIIB/C melanoma were randomized to adjuvant treatment with nDCs (n = 99) or placebo (n = 49). Active treatment consisted of intranodally injected autologous CD1c+ conventional and plasmacytoid DCs loaded with tumor antigens. The primary endpoint was the 2-year recurrence-free survival (RFS) rate, whereas the secondary endpoints included median RFS, 2-year and median overall survival, adverse event profile, and immunological response The 2-year RFS rate was 36.8% in the nDC treatment group and 46.9% in the control group (p = 0.31). Median RFS was 12.7 months vs 19.9 months, respectively (hazard ratio 1.25; 90% CI: 0.88−1.79; p = 0.29). Median overall survival was not reached in both treatment groups (hazard ratio 1.32; 90% CI: 0.73−2.38; p = 0.44). Grade 3−4 study-related adverse events occurred in 5% and 6% of patients. Functional antigen-specific T cell responses could be detected in 67.1% of patients tested in the nDC treatment group vs 3.8% of patients tested in the control group (p < 0.001). In conclusion, while adjuvant nDC treatment in stage IIIB/C melanoma patients generated specific immune responses and was well tolerated, no benefit in RFS was observed
    corecore