27 research outputs found

    Multi-collector Inductively Coupled Plasma Mass Spectrometry: New Developments and Basic Concepts for High-precision Measurements of Mass-dependent Isotope Signatures

    Get PDF
    Due to the development of multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) around 25 years ago, the isotopes of a large range of elements (masses from Li to U) are now analyzed with high enough precision and accuracy to resolve subtle natural variations. These so-called 'non-traditional stable isotope systems' opened many new research avenues and are applied at an increasing rate in research and industry projects and in a broad range of different disciplines, including archeology, biology, physics, cosmochemistry and geology. Here, we briefly summarize the most basic concepts of MC-ICP-MS, introduce new technical developments and address important points on how to acquire accurate high-precision isotope measurements of non-traditional stable isotopes

    Barium isotope (re-)equilibration in the barite-fluid system and its implications for marine barite archives

    Get PDF
    Variations in the Ba isotopic composition of seawater are largely driven by the extent of barite precipitation in the marine photic zone and replenishment of Ba by upwelling and/or continental inputs. Pelagic barites offer a robust tool for tracing sources and sinks of Ba in the (paleo)ocean as they record these isotopic variations. Knowledge of the Ba isotope fractionation between barite and ambient waters is therefore imperative. Here, the Ba isotope fractionation between barite and Ba2+ (aq) under equilibrium conditions has been estimated by the three-isotope method with a 135Ba-enriched reactive fluid. The estimated Ba isotope fractionation was Δ137/134BaBarite-Ba2+ = −0.07 ± 0.08‰. Textural observations of barite crystals recovered up to 756 days of reaction reveal smoothing of solid surfaces but also typical dissolution features such as development of pits and cracks. Thus, dissolution/re-precipitation is likely the mechanism controlling the observed isotope exchange that is facilitated by the further development of porosity in the crystals. Additionally, the isotope exchange in the experimental runs fits a second-order law yielding a surface normalized isotope exchange rate of ∼2.8 × 10−10 mol/m2/s. This exchange rate could theoretically result in complete isotope exchange between pelagic barite with a typical edge size of 1 μm and ambient seawater or pore fluid within years, altering the barite's Ba isotopic composition during settling towards the seafloor and/or after deposition in marine sediments. Although there is considerable uncertainty in extrapolating experimental results to natural conditions and longer time scales, the rapid rates of exchange observed experimentally over short timescales suggest that isotope exchange in pelagic barite should be considered during interpretation of the Ba isotope composition as a paleoarchive.</p

    PIRCHE-II is related to graft failure after kidney transplantation

    Get PDF
    Individual HLA mismatches may differentially impact graft survival after kidney transplantation. Therefore, there is a need for a reliable tool to define permissible HLA mismatches in kidney transplantation. We previously demonstrated that donor-derived Predicted Indirectly ReCognizable HLA Epitopes presented by recipient HLA class II (PIRCHE-II) play a role in de novo donor-specific HLA antibodies formation after kidney transplantation. In the present Dutch multi-center study, we evaluated the possible association between PIRCHE-II and kidney graft failure in 2,918 donor-recipient couples that were transplanted between 1995 and 2005. For these donors-recipients couples, PIRCHE-II numbers were related to graft survival in univariate and multivariable analyses. Adjusted for confounders, the natural logarithm of PIRCHE-II was associated with a higher risk for graft failure [hazard ratio (HR): 1.13, 95% CI: 1.04-1.23, p = 0.003]. When analyzing a subgroup of patients who had their first transplantation, the HR of graft failure for ln(PIRCHE-II) was higher compared with the overall cohort (HR: 1.22, 95% CI: 1.10-1.34, p < 0.001). PIRCHE-II demonstrated both early and late effects on graft failure in this subgroup. These data suggest that the PIRCHE-II may impact graft survival after kidney transplantation. Inclusion of PIRCHE-II in donor-selection criteria may eventually lead to an improved kidney graft survival

    PIRCHE-II Is Related to Graft Failure after Kidney Transplantation

    Get PDF
    Individual HLA mismatches may differentially impact graft survival after kidney transplantation. Therefore, there is a need for a reliable tool to define permissible HLA mismatches in kidney transplantation. We previously demonstrated that donor-derived Predicted Indirectly ReCognizable HLA Epitopes presented by recipient HLA class II (PIRCHE-II) play a role in de novo donor-specific HLA antibodies formation after kidney transplantation. In the present Dutch multi-center study, we evaluated the possible association between PIRCHE-II and kidney graft failure in 2,918 donor–recipient couples that were transplanted between 1995 and 2005. For these donors–recipients couples, PIRCHE-II numbers were related to graft survival in univariate and multivariable analyses. Adjusted for confounders, the natural logarithm of PIRCHE-II was associated with a higher risk for graft failure [hazard ratio (HR): 1.13, 95% CI: 1.04–1.23, p = 0.003]. When analyzing a subgroup of patients who had their first transplantation, the HR of graft failure for ln(PIRCHE-II) was higher compared with the overall cohort (HR: 1.22, 95% CI: 1.10–1.34, p &lt; 0.001). PIRCHE-II demonstrated both early and late effects on graft failure in this subgroup. These data suggest that the PIRCHE-II may impact graft survival after kidney transplantation. Inclusion of PIRCHE-II in donor-selection criteria may eventually lead to an improved kidney graft survival

    T-Cell Epitopes Shared Between Immunizing HLA and Donor HLA Associate With Graft Failure After Kidney Transplantation

    Get PDF
    CD4(+) T-helper cells play an important role in alloimmune reactions following transplantation by stimulating humoral as well as cellular responses, which might lead to failure of the allograft. CD4(+) memory T-helper cells from a previous immunizing event can potentially be reactivated by exposure to HLA mismatches that share T-cell epitopes with the initial immunizing HLA. Consequently, reactivity of CD4(+) memory T-helper cells toward T-cell epitopes that are shared between immunizing HLA and donor HLA could increase the risk of alloimmunity following transplantation, thus affecting transplant outcome. In this study, the amount of T-cell epitopes shared between immunizing and donor HLA was used as a surrogate marker to evaluate the effect of donor-reactive CD4(+) memory T-helper cells on the 10-year risk of death-censored kidney graft failure in 190 donor/recipient combinations using the PIRCHE-II algorithm. The T-cell epitopes of the initial theoretical immunizing HLA and the donor HLA were estimated and the number of shared PIRCHE-II epitopes was calculated. We show that the natural logarithm-transformed PIRCHE-II overlap score, or Shared T-cell EPitopes (STEP) score, significantly associates with the 10-year risk of death-censored kidney graft failure, suggesting that the presence of pre-transplant donor-reactive CD4(+) memory T-helper cells might be a strong indicator for the risk of graft failure following kidney transplantation

    Volatile loss following cooling and accretion of the Moon revealed by chromium isotopes

    No full text
    International audienceTerrestrial and lunar rocks share chemical and isotopic similarities in refractory elements, suggestive of a common precursor. By contrast, the marked depletion of volatile elements in lunar rocks together with their enrichment in heavy isotopes compared with Earth's mantle suggests that the Moon underwent evaporative loss of volatiles. However, whether equilibrium prevailed during evaporation and, if so, at what conditions (temperature, pressure, and oxygen fugacity) remain unconstrained. Chromium may shed light on this question, as it has several thermodynamically stable, oxidized gas species that can distinguish between kinetic and equilibrium regimes. Here, we present high-precision Cr isotope measurements in terrestrial and lunar rocks that reveal an enrichment in the lighter isotopes of Cr in the Moon compared with Earth's mantle by 100 ± 40 ppm per atomic mass unit. This observation is consistent with Cr partitioning into an oxygen-rich vapor phase in equilibrium with the proto-Moon, thereby stabilizing the CrO 2 species that is isotopically heavy compared with CrO in a lunar melt. Temperatures of 1,600-1,800 K and oxygen fugacities near the fayalite-magnetite-quartz buffer are required to explain the elemental and isotopic difference of Cr between Earth's mantle and the Moon. These temperatures are far lower than modeled in the aftermath of a giant impact, implying that volatile loss did not occur contemporaneously with impact but following cooling and accretion of the Moon

    Barium Isotopic Compositions of Geological Reference Materials

    No full text
    The interest in variations of barium (Ba) stable isotope amount ratios in low and high temperature environments has increased over the past several years. Characterisa- tion of Ba isotope ratios of widely available reference materials is now required to validate analytical proce- dures and to allow comparison of data obtained by different laboratories. We present new Ba isotope amount ratio data for twelve geological reference materials with silicate (AGV-1, G-2, BHVO-1, QLO-1, BIR-1, JG-1a, JB- 1a, JR-1 and JA-1), carbonate (IAEA-CO-9) and sulfate matrices (IAEA-SO-5 and IAEA-SO-6) relative to NIST SRM 3104a. In addition, two artificially fractionated in-house reference materials BaBe12 and BaBe27 (d137/134Ba = -1.161 ± 0.049‰ and -0.616 ± 0.050‰, respectively) are used as quality control solutions for the negative d- range. Accuracy of our data was assessed by interlabo- ratory comparison between the University of Bern and the United States Geological Survey (USGS). Data were measured by MC-ICP-MS (Bern) and TIMS (USGS) using two different double spikes for mass bias correction (130Ba–135Ba and 132Ba–136Ba, respectively). MC-ICP- MS measurements were further tested for isobaric and non-spectral matrix effects by a number of common matrix elements. The results are in excellent agreement and suggest data accuracy

    Barium isotope fractionation during witherite (BaCO3) dissolution, precipitation and at equilibrium

    No full text
    This study examines the behavior of Ba isotope fractionation between witherite and fluid during mineral dissolution, precipitation and at chemical equilibrium. Experiments were performed in batch reactors at 25 oC in 10-2 M NaCl solution where the pH was adjusted by continuous bubbling of a water saturated gas phase of CO2 or atmospheric air. During witherite dissolution no Ba isotope fractionation was observed between solid and fluid. In contrast, during witherite precipitation, caused by a pH increase, a preferential uptake of the lighter 134Ba isotopomer in the solid phase was observed. In this case, the isotope fractionation factor αwitherite-fluid is calculated to be 0.99993 ± 0.00004 (or Δ137/134Bawitherite-fluid ≈ -0.07 ± 0.04 ‰, 2sd). The most interesting feature of this study, however, is that after the attainment of chemical equilibrium, the Ba isotope composition of the aqueous phase is progressively becoming lighter, indicating a continuous exchange of Ba2+ ions between witherite and fluid. Mass balance calculations indicate that the detachment of Ba from the solid is not only restricted to the outer surface layer of the solid, but affects several (~7 unit cells) subsurface layers of the crystal. This observation comes in excellent agreement with the concept of a dynamic system at chemical equilibrium in a mineral-fluid system, denoting that the time required for the achievement of isotopic equilibrium in the witherite-fluid system is longer compared to that observed for chemical equilibrium. Overall, these results indicate that the isotopic composition of Ba bearing carbonates in natural environments may be altered due to changes in fluid composition without a net dissolution/precipitation to be observed

    Lack of resolvable titanium stable isotopic variations in bulk chondrites

    No full text
    International audienceTitanium and calcium are both refractory lithophile elements. Significant stable isotopic variations on Ti and Ca have been documented within calcium, aluminum-rich inclusions (CAIs) in carbonaceous chondrites. To trace the condensation history of Ti in the solar nebula, we conducted a high-precision double-spike Ti stable isotopic study on a large set of chondrites. The studied chondrites have a homogeneous bulk Ti stable isotopic composition (delta 49/47Ti(IPGP-Ti) = -0.069 +/- 0.018 parts per thousand, 2se, n = 22, i.e., the per mil deviation of the Ti-49/Ti-47 ratios relative to the IPGP-Ti reference material). The homogeneity across eleven chondrite groups implies that chondrites have acquired, through the condensation sequence at equilibrium, the average stable isotopic composition of Ti in the refractory solids that condensed early in the solar nebula. In contrast, the light Ca stable isotopic compositions of bulk chondrites can be attributed to either the presence of CAIs (CV-, CM- and CO-type) or parent-body aqueous alteration (CR- and CI-type)
    corecore