21 research outputs found

    Closely related Lak megaphages replicate in the microbiomes of diverse animals

    Get PDF
    Lak phages with alternatively coded ∼540 kbp genomes were recently reported to replicate in Prevotella in microbiomes of humans that consume a non-western diet, baboons and pigs. Here, we explore Lak phage diversity and broader distribution using diagnostic PCR and genome-resolved metagenomics. Lak phages were detected in 13 animal types, including reptiles, and are particularly prevalent in pigs. Tracking Lak through the pig gastrointestinal tract revealed significant enrichment in the hindgut compared to the foregut. We reconstructed 34 new Lak genomes, including six curated complete genomes, all of which are alternatively coded. An anomalously large (∼660 kbp) complete genome reconstructed for the most deeply branched Lak from a horse microbiome is also alternatively coded. From the Lak genomes, we identified proteins associated with specific animal species; notably, most have no functional predictions. The presence of closely related Lak phages in diverse animals indicates facile distribution coupled to host-specific adaptation

    Searching for early breast cancer biomarkers by serum protein profiling of pre-diagnostic serum; a nested case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Serum protein profiles have been investigated frequently to discover early biomarkers for breast cancer. So far, these studies used biological samples collected <it>at </it>or <it>after </it>diagnosis. This may limit these studies' value in the search for cancer biomarkers because of the often advanced tumor stage, and consequently risk of reverse causality. We present for the first time pre-diagnostic serum protein profiles in relation to breast cancer, using the Prospect-EPIC (European Prospective Investigation into Cancer and nutrition) cohort.</p> <p>Methods</p> <p>In a nested case-control design we compared 68 women diagnosed with breast cancer within three years after enrollment, with 68 matched controls for differences in serum protein profiles. All samples were analyzed with SELDI-TOF MS (surface enhanced laser desorption/ionization time-of-flight mass spectrometry). In a subset of 20 case-control pairs, the serum proteome was identified and relatively quantified using isobaric Tags for Relative and Absolute Quantification (iTRAQ) and online two-dimensional nano-liquid chromatography coupled with tandem MS (2D-nanoLC-MS/MS).</p> <p>Results</p> <p>Two SELDI-TOF MS peaks with m/z 3323 and 8939, which probably represent doubly charged apolipoprotein C-I and C3a des-arginine anaphylatoxin (C3a<sub>desArg</sub>), were higher in pre-diagnostic breast cancer serum (p = 0.02 and p = 0.06, respectively). With 2D-nanoLC-MS/MS, afamin, apolipoprotein E and isoform 1 of inter-alpha trypsin inhibitor heavy chain H4 (ITIH4) were found to be higher in pre-diagnostic breast cancer (p < 0.05), while alpha-2-macroglobulin and ceruloplasmin were lower (p < 0.05). C3a<sub>desArg </sub>and ITIH4 have previously been related to the presence of symptomatic and/or mammographically detectable breast cancer.</p> <p>Conclusions</p> <p>We show that serum protein profiles are already altered up to three years before breast cancer detection.</p

    Validation of previously identified serum biomarkers for breast cancer with SELDI-TOF MS: a case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Serum protein profiling seems promising for early detection of breast cancer. However, the approach is also criticized, partly because of difficulties in validating discriminatory proteins. This study's aim is to validate three proteins previously reported to be discriminative between breast cancer cases and healthy controls. These proteins had been identified as a fragment of inter-alpha trypsin inhibitor H4 (4.3 kDa), C-terminal-truncated form of C3a des arginine anaphylatoxin (8.1 kDa) and C3a des arginine anaphylatoxin (8.9 kDa).</p> <p>Methods</p> <p>Serum protein profiles of 48 breast cancer patients and 48 healthy controls were analyzed with surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS). Differences in protein intensity between breast cancer cases and controls were measured with the Mann-Whitney U test and adjusted for confounding in a multivariate logistic regression model.</p> <p>Results</p> <p>Four peaks, with mass-to-charge ratio (<it>m/z</it>) 4276, 4292, 8129 and 8941, were found that were assumed to represent the previously reported proteins. <it>M/</it>z 4276 and 4292 were statistically significantly decreased in breast cancer cases compared to healthy controls (p < 0.001). M/<it>z </it>8941 was decreased in breast cancer cases (p < 0.001) and <it>m/z </it>8129 was not related with breast cancer (p = 0.87). Adjustment for sample preparation day, sample storage duration and age did not substantially alter results.</p> <p>Conclusion</p> <p><it>M/z </it>4276 and 4292 both represented the previously reported 4.3 kDa protein and were both decreased in breast cancer patients, which is in accordance with the results of most previous studies. <it>M/z </it>8129 was in contrast with previous studies not related with breast cancer. Remarkably, <it>m/z </it>8941 was decreased in breast cancer cases whereas in previous studies it was increased. Differences in patient populations and pre-analytical sample handling could have contributed to discrepancies. Further research is needed before we can conclude on the relevance of these proteins as breast cancer biomarkers.</p
    corecore