26 research outputs found

    Immunodominance in T cell responses elicited against different domains of detoxified pneumolysin PlyD1

    No full text
    Detoxified pneumolysin, PlyD1, is a protein vaccine candidate that induces protection against infections with Streptococcus pneumoniae in mouse models. Despite extensive knowledge on antibody responses against PlyD1, limited information is available about PlyD1 induced T cell recognition. Here we interrogated epitope breadth and functional characteristics of the T cell response to PlyD1 in two mouse strains. BALB/c (H-2d) and C57BL/6 (H-2b) mice were vaccinated with Al(OH)3-adjuvanted or non-adjuvanted PlyD1, or placebo, on day 0, 21 and 42 and were sacrificed at day 56 for collection of sera and spleens. Vaccination with adjuvanted and non-adjuvanted PlyD1 induced anti-pneumolysin IgG antibodies with neutralizing capacity in both mouse strains. Adjuvantation of PlyD1 enhanced the serological responses in both strains. In vitro restimulation of splenocytes with PlyD1 and 18-mer synthetic peptides derived from pneumolysin revealed specific proliferative and cytokine responses. For both mouse strains, one immunodominant and three subdominant natural epitopes were identified. Overlap between H-2d and H-2b restricted T cell epitopes was limited, yet similarities were found between epitopes processed in mice and predicted to be immunogenic in humans. H-2d restricted T cell epitopes were localized in pneumolysin domains 2 and 3, whereas H-2b epitopes were scattered over the protein. Cytokine responses show mostly a Th2 profile, with low levels of Th1 cytokines, in both mouse strains. In conclusion, PlyD1 evokes T cell responses in mice directed against multiple epitope regions, that is dependent on Major Histocompatibility Complex (MHC) background. These results are important to understand human PlyD1 T cell immunogenicity, to guide cell mediated immunity studies in the context of vaccine development

    Serotype-Specific IgG Antibody Waning after Pneumococcal Conjugate Primary Series Vaccinations with either the 10-Valent or the 13-Valent Vaccine.

    No full text
    The two currently available ten- and thirteen-valent pneumococcal conjugate vaccines (PCV10 and PCV13) both induce serotype-specific IgG anti-polysaccharide antibodies and are effective in preventing vaccine serotype induced invasive pneumococcal disease (IPD) as well as in reducing overall vaccine-serotype carriage and transmission and thereby inducing herd protection in the whole population. IgG levels decline after vaccination and could become too low to prevent carriage acquisition and/or pneumococcal disease. We compared the levels of 10-valent (PCV10) and 13-valent (PCV13) pneumococcal vaccine induced serum IgG antibodies at multiple time points after primary vaccinations. Data from two separate studies both performed in the Netherlands in infants vaccinated at 2, 3, and 4 months of age with either PCV10 or PCV13 were compared. Antibody levels were measured at 5, 8, and 11 months of age, during the interval between the primary immunization series and the 11-months booster dose. Serotype-specific IgG levels were determined by multiplex immunoassay. Although antibody kinetics showed significant variation between serotypes and between vaccines for the majority of the 10 shared serotypes, i.e., 1, 5, 7F, 9V, 14, 18C, and 23F, antibody concentrations were sufficiently high for both vaccines, immediately after the primary series and throughout the whole period until the booster dose. In contrast, for serotypes 4 and 19F in the PCV10 group and for serotypes 4 and 6B in the PCV13 group, IgG antibody concentrations already come within reach of the frequently used seroprotection level of 0.35 μg/mL immediately after the primary series at the five month time point and/or at eight months. This paper addresses the importance of revealing differences in serotype-specific and pneumococcal vaccine-dependent IgG antibody patterns during the interval between the primary series and the booster dose, an age period with a high IPD incidence. Trial registration: www.trialregister.nl NTR3069 and NTR2316

    Serotype-Specific IgG Antibody Waning after Pneumococcal Conjugate Primary Series Vaccinations with either the 10-Valent or the 13-Valent Vaccine

    No full text
    The two currently available ten- and thirteen-valent pneumococcal conjugate vaccines (PCV10 and PCV13) both induce serotype-specific IgG anti-polysaccharide antibodies and are effective in preventing vaccine serotype induced invasive pneumococcal disease (IPD) as well as in reducing overall vaccine-serotype carriage and transmission and thereby inducing herd protection in the whole population. IgG levels decline after vaccination and could become too low to prevent carriage acquisition and/or pneumococcal disease. We compared the levels of 10-valent (PCV10) and 13-valent (PCV13) pneumococcal vaccine induced serum IgG antibodies at multiple time points after primary vaccinations. Data from two separate studies both performed in the Netherlands in infants vaccinated at 2, 3, and 4 months of age with either PCV10 or PCV13 were compared. Antibody levels were measured at 5, 8, and 11 months of age, during the interval between the primary immunization series and the 11-months booster dose. Serotype-specific IgG levels were determined by multiplex immunoassay. Although antibody kinetics showed significant variation between serotypes and between vaccines for the majority of the 10 shared serotypes, i.e., 1, 5, 7F, 9V, 14, 18C, and 23F, antibody concentrations were sufficiently high for both vaccines, immediately after the primary series and throughout the whole period until the booster dose. In contrast, for serotypes 4 and 19F in the PCV10 group and for serotypes 4 and 6B in the PCV13 group, IgG antibody concentrations already come within reach of the frequently used seroprotection level of 0.35 μg/mL immediately after the primary series at the five month time point and/or at eight months. This paper addresses the importance of revealing differences in serotype-specific and pneumococcal vaccine-dependent IgG antibody patterns during the interval between the primary series and the booster dose, an age period with a high IPD incidence. Trial registration: www.trialregister.nl NTR3069 and NTR2316

    Serotype-Specific IgG Antibody Waning after Pneumococcal Conjugate Primary Series Vaccinations with either the 10-Valent or the 13-Valent Vaccine

    No full text
    The two currently available ten- and thirteen-valent pneumococcal conjugate vaccines (PCV10 and PCV13) both induce serotype-specific IgG anti-polysaccharide antibodies and are effective in preventing vaccine serotype induced invasive pneumococcal disease (IPD) as well as in reducing overall vaccine-serotype carriage and transmission and thereby inducing herd protection in the whole population. IgG levels decline after vaccination and could become too low to prevent carriage acquisition and/or pneumococcal disease. We compared the levels of 10-valent (PCV10) and 13-valent (PCV13) pneumococcal vaccine induced serum IgG antibodies at multiple time points after primary vaccinations. Data from two separate studies both performed in the Netherlands in infants vaccinated at 2, 3, and 4 months of age with either PCV10 or PCV13 were compared. Antibody levels were measured at 5, 8, and 11 months of age, during the interval between the primary immunization series and the 11-months booster dose. Serotype-specific IgG levels were determined by multiplex immunoassay. Although antibody kinetics showed significant variation between serotypes and between vaccines for the majority of the 10 shared serotypes, i.e., 1, 5, 7F, 9V, 14, 18C, and 23F, antibody concentrations were sufficiently high for both vaccines, immediately after the primary series and throughout the whole period until the booster dose. In contrast, for serotypes 4 and 19F in the PCV10 group and for serotypes 4 and 6B in the PCV13 group, IgG antibody concentrations already come within reach of the frequently used seroprotection level of 0.35 μg/mL immediately after the primary series at the five month time point and/or at eight months. This paper addresses the importance of revealing differences in serotype-specific and pneumococcal vaccine-dependent IgG antibody patterns during the interval between the primary series and the booster dose, an age period with a high IPD incidence. Trial registration: www.trialregister.nl NTR3069 and NTR2316

    Differential B-cell memory around the 11-month booster in children vaccinated with a 10- or 13-valent pneumococcal conjugate vaccine

    No full text
    BACKGROUND: Both the 10- and 13-valent pneumococcal conjugate vaccines (PCV10 and PCV13) induce immunological memory against Streptococcus pneumoniae infections caused by vaccine serotypes. In addition to comparing serum antibody levels, we investigated frequencies of serotype-specific plasma cells (PCs) and memory B-cells (Bmems) as potential predictors of long-term immunity around the booster vaccination at 11 months of age. METHODS: Infants were immunized with PCV10 or PCV13 at 2, 3, 4, and 11 months of age. Blood was collected before the 11-month booster or 7-9 days afterward. Serotype-specific immunoglobulin G (IgG) levels were determined in serum samples by multiplex immunoassay. Circulating specific PCs and Bmems against shared serotypes 1, 6B, 7F, and 19F and against PCV13 serotypes 6A and 19A were measured in peripheral blood mononuclear cells by enzyme-linked immunospot assay. RESULTS: No major differences in IgG levels and PC frequencies between groups were found for the 4 shared serotypes. Notably, PCV13 vaccination resulted in higher frequencies of Bmems than PCV10 vaccination, both before and after the booster dose, for all 4 shared serotypes except for serotype 1 postbooster. For PCV13-specific serotypes 6A and 19A, the IgG levels and frequencies of PCs and Bmems were higher in the PCV13 group, pre- and postbooster, except for PC frequencies prebooster. CONCLUSIONS: Both PCVs are immunogenic and induce measurable IgG, PC, and Bmem booster responses at 11 months. Compared to PCV10, vaccination with PCV13 was associated with overall similar IgG levels and PC frequencies but with higher Bmem frequencies before and after the 11-month booster. The clinical implications of these results need further follow-up. CLINICAL TRIALS REGISTRATION: NTR3069

    3D modelling of T cell epitopes in Ply for BALB/c and C57BL/6 mice.

    No full text
    <p>Yellow spheres represent the C-ß atoms of the ID epitope and orange spheres represent the C-ß atoms of the subD epitopes. The dotted circle represents the overlap region between both mouse strains. Colors of the protein structure display the different domains of Ply: cyan indicates domain 1 (amino acids 1–21, 58–147,198–243,319–342), green indicates domain 2 (amino acids 22–57,343–359), red indicates domain 3 (amino acids 148–197,244–318), and purple indicates domain 4 (amino acids 360–469).</p

    Ply sequence with localization of BALB/c and C57BL/6 T cell-immunogenic regions and predicted HLA-DR binding regions.

    No full text
    <p>Immunodominant epitopes of both BALB/c and C57BL/6 mice are indicated with a #, and subdominant epitopes with a *. ¶ shows the Epi-bars that are <i>in silico</i> predicted for HLA-DR-binding epitopes in humans. Mutated aa residues of PlyD1 are squared and positions with allelic variation as described by Jeffries <i>et al</i> [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0193650#pone.0193650.ref008" target="_blank">8</a>] are underlined. Colors, cyan, green, red and purple, indicate domains 1, 2, 3, and 4 of Ply, respectively.</p
    corecore