31 research outputs found

    Ultra-long-TE arterial spin labeling reveals rapid and brain-wide blood-to-CSF water transport in humans

    Get PDF
    The study of brain clearance mechanisms is an active area of research. While we know that the cerebrospinal fluid (CSF) plays a central role in one of the main existing clearance pathways, the exact processes for the secretion of CSF and the removal of waste products from tissue are under debate. CSF is thought to be created by the exchange of water and ions from the blood, which is believed to mainly occur in the choroid plexus. This exchange has not been thoroughly studied in vivo.We propose a modified arterial spin labeling (ASL) MRI sequence and image analysis to track blood water as it is transported to the CSF, and to characterize its exchange from blood to CSF. We acquired six pseudo-continuous ASL sequences with varying labeling duration (LD) and post-labeling delay (PLD) and a segmented 3D-GRASE readout with a long echo train (8 echo times (TE)) which allowed separation of the very long-T-2 CSF signal. ASL signal was observed at long TEs (793 ms and higher), indicating presence of labeled water transported from blood to CSF. This signal appeared both in the CSF proximal to the choroid plexus and in the subarachnoid space surrounding the cortex. ASL signal was separated into its blood, gray matter and CSF components by fitting a triexponential function with T(2)s taken from literature. A two-compartment dynamic model was introduced to describe the exchange of water through time and TE. From this, a water exchange time from the blood to the CSF (Tbl->CSF) was mapped, with an order of magnitude of approximately 60 s.Neuro Imaging Researc

    Characteristics of misclassified ct perfusion ischemic core in patients with acute ischemic stroke

    Get PDF
    Background CT perfusion (CTP) is used to estimate the extent of ischemic core and penumbra in patients with acute ischemic stroke. CTP reliability, however, is limited. This study aims to identify regions misclassified as ischemic core on CTP, using infarct on follow-up noncontrast CT. We aim to assess differences in volumetric and perfusion characteristics in these regions compared to areas that ended up as infarct on follo

    Spatial and temporal intracerebral hemorrhage patterns in Dutch-type hereditary cerebral amyloid angiopathy

    Get PDF
    Aim To investigate whether there is a topographical and temporal pattern of index and recurrent intracerebral hemorrhages (ICH) in Dutch-type hereditary Cerebral Amyloid Angiopathy (D-CAA) to increase our understanding on CAA-related ICH development. Methods We included patients with DNA confirmed D-CAA or a history with >= 1 lobar ICH and >= 1 first-degree relative with D-CAA. Topographical pattern was studied by location (proportion frontal/parietal/temporal/occipital; infra/supratentorial and occurrence ratios relative to lobe volume) and volume of index and recurrent ICHs were determined on CT. Temporal pattern was examined by time between recurrent ICHs was retrieved from medical records. Results We included 72 patients with D-CAA (mean age at index ICH 55 years) with in total 214 ICH. The median follow-up time was 7 years (range 0.8 to 28 years). All ICH were lobar and supratentorial. The index ICH was most frequently located in the occipital lobe (34% vs. 22% in the other three lobes; with index ICH occurrence ratios relative to lobe volume of 1.9 for occipital, 1.0 for temporal, 1.2 for parietal, and 0.5 for frontal, p = 0.001). In 16/47 (34%) patients with multiple ICH, the second ICH was located in the same lobe as the index ICH. The median time-interval between subsequent ICH was #1-2 ICH 27 months, #2-3 ICH 14 months, and #3-4 ICH 7 months (p = 0.6) There was no difference in volume between index and recurrent ICHs. Conclusions We found that index and recurrent ICHs in D-CAA have a preference for the occipital lobe and are least frequent in the frontal lobe, which adds to the existing knowledge of histopathological studies on amyloid load in CAA. Surprisingly, there was no acceleration in time nor gradual increase of hematoma volume between subsequent ICHs.Neuro Imaging Researc

    Cerebellar hemorrhages in patients with Dutch-type hereditary cerebral amyloid angiopathy

    Get PDF
    Background Recent studies suggest that superficially located cerebellar intracerebral hemorrhage (ICH) and microbleeds might point towards sporadic cerebral amyloid angiopathy (CAA). Aims We investigated the proportion of cerebellar ICH and asymptomatic macro- and microbleeds in Dutch-type hereditary CAA (D-CAA), a severe and essentially pure form of CAA. Methods Symptomatic patients with D-CAA (defined as >= 1 symptomatic ICH) and presymptomatic D-CAA mutation-carriers were included. We assessed magnetic resonance imaging scans for symptomatic (cerebellar) ICH and asymptomatic cerebellar macro- and microbleeds according to the STRIVE-criteria. Location was assessed as superficial-cerebellar (cortex, vermis or juxta-cortical) or deep-cerebellar (white matter, pedunculi cerebelli and gray nuclei). Results We included 63 participants (mean age 58 years, 60% women, 42 symptomatic). In total, the 42 symptomatic patients with D-CAA had 107 symptomatic ICH (range 1-7). None of these ICH were located in the cerebellum. Six of 42 (14%, 95%CI 4-25%) symptomatic patients and none of the 21 (0%, 95%CI 0-0%) presymptomatic carriers had >= 1 asymptomatic cerebellar macrobleed(s). All macrobleeds were superficially located. Cerebellar microbleeds were found in 40 of 63 (64%, 95%CI 52-76) participants (median 1.0, range 0-159), 81% in symptomatic patients and 29% in presymptomatic carriers. All microbleeds were strictly or predominantly superficially (ratio superficial versus deep 15:1) located. Conclusions Superficially located asymptomatic cerebellar macrobleeds and microbleeds are common in D-CAA. Cerebellar microbleeds are already present in the presymptomatic stage. Despite the high frequency of cerebellar micro and macrobleeds, CAA pathology did not result in symptomatic cerebellar ICH in patients with D-CAA.Paroxysmal Cerebral Disorder

    Cerebellar superficial siderosis in cerebral amyloid angiopathy

    Get PDF
    Background and Purpose: Although evidence accumulates that the cerebellum is involved in cerebral amyloid angiopathy (CAA), cerebellar superficial siderosis is not considered to be a disease marker. The objective of this study is to investigate cerebellar superficial siderosis frequency and its relation to hemorrhagic magnetic resonance imaging markers in patients with sporadic and Dutch-type hereditary CAA and patients with deep perforating arteriopathy-related intracerebral hemorrhage. Methods: We recruited patients from 3 prospective 3 Tesla magnetic resonance imaging studies and scored siderosis and hemorrhages. Cerebellar siderosis was identified as hypointense linear signal loss (black) on susceptibility-weighted or T2*-weighted magnetic resonance imaging which follows at least one folia of the cerebellar cortex (including the vermis). Results: We included 50 subjects with Dutch-type hereditary CAA, (mean age 50 years), 45 with sporadic CAA (mean age 72 years), and 43 patients with deep perforating arteriopathy-related intracerebral hemorrhage (mean age 54 years). Cerebellar superficial siderosis was present in 5 out of 50 (10% [95% CI, 2-18]) patients with Dutch-type hereditary CAA, 4/45 (9% [95% CI, 1-17]) patients with sporadic CAA, and 0 out of 43 (0% [95% CI, 0-8]) patients with deep perforating arteriopathy-related intracerebral hemorrhage. Patients with cerebellar superficial siderosis had more supratentorial lobar (median number 9 versus 2, relative risk, 2.9 [95% CI, 2.5-3.4]) and superficial cerebellar macrobleeds (median number 2 versus 0, relative risk, 20.3 [95% CI, 8.6-47.6]) compared with patients without the marker. The frequency of cortical superficial siderosis and superficial cerebellar microbleeds was comparable. Conclusions: We conclude that cerebellar superficial siderosis might be a novel marker for CAA.Paroxysmal Cerebral Disorder

    Minocycline for sporadic and hereditary cerebral amyloid angiopathy (BATMAN): study protocol for a placebo-controlled randomized double-blind trial

    Get PDF
    BackgroundCerebral amyloid angiopathy (CAA) is a disease caused by the accumulation of the amyloid-beta protein and is a major cause of intracerebral hemorrhage (ICH) and vascular dementia in the elderly. The presence of the amyloid-beta protein in the vessel wall may induce a chronic state of cerebral inflammation by activating astrocytes, microglia, and pro-inflammatory substances. Minocycline, an antibiotic of the tetracycline family, is known to modulate inflammation, gelatinase activity, and angiogenesis. These processes are suggested to be key mechanisms in CAA pathology. Our aim is to show the target engagement of minocycline and investigate in a double-blind placebo-controlled randomized clinical trial whether treatment with minocycline for 3 months can decrease markers of neuroinflammation and of the gelatinase pathway in cerebrospinal fluid (CSF) in CAA patients.MethodsThe BATMAN study population consists of 60 persons: 30 persons with hereditary Dutch type CAA (D-CAA) and 30 persons with sporadic CAA. They will be randomized for either placebo or minocycline (15 sporadic CAA/15 D-CAA minocycline, 15 sporadic CAA/15 D-CAA placebo). At t = 0 and t = 3 months, we will collect CSF and blood samples, perform a 7-T MRI, and collect demographic characteristics.DiscussionThe results of this proof-of-principle study will be used to assess the potential of target engagement of minocycline for CAA. Therefore, our primary outcome measures are markers of neuroinflammation (IL-6, MCP-1, and IBA-1) and of the gelatinase pathway (MMP2/9 and VEGF) in CSF. Secondly, we will look at the progression of hemorrhagic markers on 7-T MRI before and after treatment and investigate serum biomarkers.Radiolog

    Occipital cortical calcifications in cerebral amyloid angiopathy

    Get PDF
    Background and Purpose:Cortical calcifications have been reported in patients with cerebral amyloid angiopathy (CAA), although their prevalence and pathophysiology are unknown. We investigated the frequency of calcifications on computed tomography, their association with intracerebral hemorrhage (ICH) and their coexistence with a striped pattern of the occipital cortex reflecting microcalcifications on ultra-high-field 7T-magnetic resonance imaging in Dutch-type hereditary CAA (D-CAA) and sporadic CAA.Methods:We included D-CAA mutation carriers with a proven APP (amyloid precursor protein) mutation or >= 1 lobar ICH and >= 1 first-degree relative with D-CAA and sporadic CAA patients with probable CAA according to the modified Boston criteria. D-CAA carriers were regarded symptomatic when they had a history of symptomatic ICH. We assessed the presence, location, and progression of calcifications and their association with ICH and the striped occipital cortex.Results:We found cortical calcifications in 15/81 (19% [95% CI, 11-29]) D-CAA mutation carriers (15/69 symptomatic and 0/12 presymptomatic) and in 1/59 (2% [95% CI, 0-9]) sporadic CAA patients. Calcifications were all bilateral located in the occipital lobes. In 3/15 (20%) of the symptomatic D-CAA patients the calcifications progressed over a period up to 10 years. There was evidence of an association between cortical calcifications and new ICH development (hazard ratio, 7.1 [95% CI, 0.9-54.9], log-rank P=0.03). In 7/25 D-CAA symptomatic carriers in whom a 7T-magnetic resonance imaging was performed, a striped pattern of the occipital cortex was present; in 3/3 (100%) of those with calcifications on computed tomography and 4/22 (18%) of those without calcifications.Conclusions:Occipital cortical calcifications are frequent in D-CAA but seem to be rare in sporadic CAA. Their absence in presymptomatic carriers and their association with ICH might suggest that they are a marker for advanced CAA. Cortical calcifications on computed tomography seem to be associated with the striped occipital cortex on 7T-magnetic resonance imaging which may possibly represent an early stage of calcification.Development and application of statistical models for medical scientific researc

    Intracranial Cerebrospinal Fluid Volume as a Predictor of Malignant Middle Cerebral Artery Infarction

    Get PDF
    Background and Purpose— Predicting malignant middle cerebral artery (MCA) infarction can help to identify patients who may benefit from preventive decompressive surgery. We aimed to investigate the association between the ratio of intracranial cerebrospinal fluid (CSF) volume to intracranial volume (ICV) and malignant MCA infarction. Methods— Patients with an occlusion proximal to the M3 segment of the MCA were selected from the DUST (Dutch Acute Stroke Study). Admission imaging included noncontrast computed tomography (CT), CT perfusion, and CT angiography. Patient characteristics and CT findings were collected. The ratio of intracranial CSF volume to ICV (CSF/ICV) was quantified on admission thin-slice noncontrast CT. Malignant MCA infarction was defined as a midline shift of >5 mm on follow-up noncontrast CT, which was performed 3 days after the stroke or in case of clinical deterioration. To test the association between CSF/ICV and malignant MCA infarction, odds ratios and 95% CIs were calculated for 3 multivariable models by using binary logistic regression. Model performances were compared by using the likelihood ratio test. Results— Of the 286 included patients, 35 (12%) developed malignant MCA infarction. CSF/ICV was independently associated with malignant MCA infarction in 3 multivariable models: (1) with age and admission National Institutes of Health Stroke Scale (odds ratio, 3.3; 95% CI, 1.1–11.1), (2) with admission National Institutes of Health Stroke Scale and poor collateral score (odds ratio, 7.0; 95% CI, 2.6–21.3), and (3) with terminal internal carotid artery or proximal M1 occlusion and poor collateral score (odds ratio, 7.7; 95% CI, 2.8–23.9). The performance of model 1 (areas under the receiver operating characteristic curves, 0.795 versus 0.824; P=0.033), model 2 (areas under the receiver operating characteristic curves, 0.813 versus 0.850; P<0.001), and model 3 (areas under the receiver operating characteristic curves, 0.811 versus 0.856; P<0.001) improved significantly after adding CSF/ICV. Conclusions— The CSF/ICV ratio is associated with malignant MCA infarction and has added value to clinical and imaging prediction models in limited numbers of patients

    Sensitivity of the Edinburgh Criteria for Lobar Intracerebral Hemorrhage in Hereditary Cerebral Amyloid Angiopathy

    No full text
    Background and Purpose:The Edinburgh computed tomography and genetic criteria enable diagnosis of cerebral amyloid angiopathy (CAA) associated lobar intracerebral hemorrhage (ICH) but have not been validated in living patients. We assessed the sensitivity of the Edinburgh criteria in patients with acute lobar ICH due to Dutch-type hereditary CAA; a genetic and pure form of CAA.Methods:We retrospectively analyzed computed tomography-scans from a cohort of consecutive Dutch-type hereditary CAA patients who presented with >= 1 episode(s) of acute lobar ICH at the Leiden University Medical Center. Presence of subarachnoid hemorrhage (SAH) and finger-like projections (FLP) were determined. Association of SAH and FLP with ICH volume was analyzed using multivariate linear regression.Results:We included 55 Dutch-type hereditary CAA patients (mean age 56 years, 55% men) with a total of 107 episodes of acute lobar ICH. SAH was present in 82/107 (76%) and FLP in 62/107 (58%), resulting in a sensitivity of 76% for SAH and 58% for FLP. In 56 (52%), both markers were present. Nineteen (18%) lobar ICH showed no SAH extension or FLP. ICH volume was significantly associated with presence of SAH (median volume 4 versus 28 mL; P=0.001) and presence of FLP (median volume 7 versus 39 mL; P= 40 mL, the sensitivity of the presence of both SAH and FLP was >81% (95% CI, 70%-92%), whereas in ICH volumes Conclusions:The computed tomography-based Edinburgh criteria seem to be a sensitive diagnostic test for CAA-associated lobar ICH, although they should be used with caution in small-sized lobar ICH.Development and application of statistical models for medical scientific researc
    corecore