1,298 research outputs found

    Communities of Change, Multi Stakeholder Processes, Lobby & Advocacy : More than 100 years of experience on HBC in Malawi & Zambia!

    Get PDF
    This training of four days focussed on two areas of capacity development of the home-based care (HBC) alliance in Malawi and Zambia: 1. Communities of Change (CoC) concept and practice linked to the Multi Stakeholder Process (MSP), and 2. Lobby & Advocacy (L&A). Since June 2010 Cordaid started together with the Centre of Development Innovation (CDI) a learning and development process on the Communities of Change concept and practice linked to the Multi Stakeholder Process with around 75 persons of her staff. In order to share and deepen the development of the COC & MSP concepts and practice further with the partners in the field, Cordaid organised this training. An effective working Alliance/CoC is a condition for effective lobby and advocacy. Therefore the CoC - MSP part of the training was directly linked to the part on lobby and advocacy. The lobby and advocacy trajectory had been started already three years ago with an initial training (also in Malawi) specifically on lobby and advocacy for home based care representatives of eight countries in Africa, amongst other Malawi and Zambia. The current training on lobby and advocacy is therefore also part of the follow up of that process

    Ambulatory Monitoring of Activities and Motor Symptoms in Parkinson's Disease

    Get PDF
    Ambulatory monitoring of motor symptoms in Parkinson's disease (PD) can improve our therapeutic strategies, especially in patients with motor fluctuations. Previously published monitors usually assess only one or a few basic aspects of the cardinal motor symptoms in a laboratory setting. We developed a novel ambulatory monitoring system that provides a complete motor assessment by simultaneously analyzing current motor activity of the patient (e.g., sitting, walking, etc.) and the severity of many aspects related to tremor, bradykinesia, and hypokinesia. The monitor consists of a set of four inertial sensors. Validity of our monitor was established in seven healthy controls and six PD patients treated with deep brain stimulation (DBS) of the subthalamic nucleus. The patients were tested at three different levels of DBS treatment. Subjects were monitored while performing different tasks, including motor tests of the Unified PD Rating Scale (UPDRS). Output of the monitor was compared to simultaneously recorded videos. The monitor proved very accurate in discriminating between several motor activities. Monitor output correlated well with blinded UPDRS ratings during different DBS levels. The combined analysis of motor activity and symptom severity by our PD monitor brings true ambulatory monitoring of a wide variety of motor symptoms one step close

    PMH19 A Rehabilitation Intervention to Help People With Severe Mental Illness Obtain and Keep a Paid Job: The Economic Evaluation

    Get PDF

    Somatostatin in the rat periventricular nucleus: sex differences and effect of gonadal steroids

    Get PDF
    In the rat, the sexual dimorphism in growth hormone release is driven by sex steroids, and is suggested to result mainly from differences in somatostatin (SOM) release patterns from the median eminence. We studied the effect of gonadal steroids on SOM peptide-containing cells in the periventricular nucleus (PeVN) of ovariectomized (OVX) female rats, and compared these data with data from intact male rats. Adult female rats were treated with estradiol (E2) and/or progesterone (P), 3 months (long-term) or 2 weeks (short-term) after ovariectomy (OVX). Perfusion-fixed brains were sliced and stained, and the number of SOM-immunoreactive (-ir) cells and total SOM-ir area (in μm2) were determined using computer assisted analysis. SOM-ir cells in the PeVN showed a very characteristic rostro-caudal distribution and localization in relation to the third ventricle. Both the number of SOM-ir cells and total SOM-ir area in the PeVN were higher in male compared to OVX female rats. Neither the number of SOM-ir cells, nor the total SOM-ir area in the PeVN was affected by E2 or P treatment alone. Treatment with both gonadal steroids, however, did increase total SOM-immunoreactivity. This study is the first to describe SOM cell distribution within the rat PeVN in great detail. A clear sex difference exists in SOM peptide content in the rat PeVN. In addition, E2 and P may act synergistically to affect SOM cells in the female PeVN, suggesting that both gonadal steroids may be involved in the generation of the typical feminine SOM release pattern

    Warriors and Peacekeepers: Testing a Biosocial Implicit Leadership Hypothesis of Intergroup Relations Using Masculine and Feminine Faces

    Get PDF
    This paper examines the impact of facial cues on leadership emergence. Using evolutionary social psychology, we expand upon implicit and contingent theories of leadership and propose that different types of intergroup relations elicit different implicit cognitive leadership prototypes. It is argued that a biologically based hormonal connection between behavior and corresponding facial characteristics interacts with evolutionarily consistent social dynamics to influence leadership emergence. We predict that masculine-looking leaders are selected during intergroup conflict (war) and feminine-looking leaders during intergroup cooperation (peace). Across two experiments we show that a general categorization of leader versus nonleader is an initial implicit requirement for emergence, and at a context-specific level facial cues of masculinity and femininity contingently affect war versus peace leadership emergence in the predicted direction. In addition, we replicate our findings in Experiment 1 across culture using Western and East Asian samples. In Experiment 2, we also show that masculine-feminine facial cues are better predictors of leadership than male-female cues. Collectively, our results indicate a multi-level classification of context-specific leadership based on visual cues imbedded in the human face and challenge traditional distinctions of male and female leadership

    Processing DNA lesions during mitosis to prevent genomic instability

    Get PDF
    Failure of cells to process toxic double-strand breaks (DSBs) constitutes a major intrinsic source of genome instability, a hallmark of cancer. In contrast with interphase of the cell cycle, canonical repair pathways in response to DSBs are inactivated in mitosis. Although cell cycle checkpoints prevent transmission of DNA lesions into mitosis under physiological condition, cancer cells frequently display mitotic DNA lesions. In this review, we aim to provide an overview of how mitotic cells process lesions that escape checkpoint surveillance. We outline mechanisms that regulate the mitotic DNA damage response and the different types of lesions that are carried over to mitosis, with a focus on joint DNA molecules arising from under-replication and persistent recombination intermediates, as well as DNA catenanes. Additionally, we discuss the processing pathways that resolve each of these lesions in mitosis. Finally, we address the acute and long-term consequences of unresolved mitotic lesions on cellular fate and genome stability
    corecore