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1. Introduction 

The functioning of the growth hormone (GH) and reproductive axis is known to be closely 

related: both GH overexpression and GH-deficiency are associated with dramatic decreases 

in fertility (Bartke, 1999; Bartke et al, 1999; 2002; Naar et al, 1991). Also, aging results in 

significant changes in functionality of both axes within a similar time frame.  

In the rat, GH secretion patterns are clearly sexually dimorphic (Clark et al, 1987; Eden et al, 

1979; Gatford et al, 1998). This has been suggested to result mainly from differences in 

somatostatin (SOM) release patterns from the median eminence (ME) (Gillies, 1997; Muller 

et al, 1999; Tannenbaum et al, 1990). SOM is synthesized in the periventricular nucleus of 

the hypothalamus (PeVN) and controls in concert with GH-releasing hormone (GHRH) the 

GH release from the pituitary (Gillies, 1987; Tannenbaum et al, 1990; Terry and Martin, 1981; 

Zeitler et al, 1991). An altered GH status is reflected in changes in the hypothalamic SOM 

system. For instance, the number of SOM cells (Sasaki et al, 1997) and pre-pro SOM mRNA 

levels (Hurley and Phelps, 1992) in the PeVN were elevated in animals overexpressing GH.  
Several observations suggest that SOM may also affect reproductive function directly at the 
level of the hypothalamus. SOM synthesis in the hypothalamus and its release from the ME 
fluctuate over the estrous cycle. (Estupina et al, 1996, Zorrila et al, , 1991). Central injections 
with SOM or a SOM analog (octreotide) decreased the number of gonadotropic cells in the 
pituitary (Lovren et al, 1998; Nestorovic et al 2002; 2003). Also, we previously showed that a 
single central injection with octreotide significantly attenuated the E2-induced Luteinizing 
Hormone (LH) surge and significantly decreased the activation of Gonadotropin Releasing 
Hormone (GnRH) cells in the hypothalamus of female rats (van Vugt et al, 2004).  
Age-related changes in fertility and fecundity are associated with selective changes at the 
level of the ovary and uterus (Meredith and Butcher, 1985; Nass et al, 1984; te Velde et al, 
1998; Wise, 1982), pituitary gland (Brito et al, 1994; DePaolo et al, 1986; Krieg et al, 1995; 
Nass et al, 1984; Wise, 1982), and hypothalamus (Rubin et al, 1994; Wise, 1982; Wise et al, 
2002). Reproductive aging is characterized by changes in the length of the reproductive 
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cycle. In female rats, for instance, the normal 4 or 5 day estrous cycle will lengthen with age 
and become irregular. This is followed by a period of repetitive pseudopregnancies and/or 
persistent estrus, while cyclicity ends with a state of persistent diestrus (Vom Saal, 1994). 
Although the general sequence of events during aging is predictable, the age at which the 
decline in fertility becomes evident varies considerably between individuals and rat strains 
(Vom Saal et al, 1994; Te Velde et al, 1998). Hence, especially during the initial stage when 
cyclicity is still regular, the relative contribution of the ovaries, pituitary and hypothalamus 
to reproductive aging is unclear.  
One of the first, common changes appears to be an attenuation of the proestrous, ovulation-
inducing luteinizing hormone (LH) surge (Wise et al, 2002), which can be demonstrated 
even before estrous cycles become irregular (DePaolo et al, 1986). The latter is strongly 
associated with the age at which rats become acyclic (Nass et al, 1984). Previous research 
suggested that changes in ovarian hormone release (DePaolo et al, 1986; Lu et al, 1985), 
pituitary hormone storage and/or responsiveness to ovarian or hypothalamic signaling 
(Brito et al, 1994; Keizer et al, 2001; Matt et al, 1998), or changes in hypothalamic signaling 
(Rubin et al, 2000; Downs and Wise, 2009; Wise et al, 2002) may underlie the age-related 
attenuation of the pituitary LH surge.  
Evidence suggests that exposure to chronically elevated levels of circulating E2 during life 
advances the decline in fertility with age (Lu et al, 1981; Rodrigues et al, 1993). Moreover, it 
is known that E2 affects hypothalamic SOM content and release, although the literature is 
somewhat controversial on the precise role of E2 on SOM cell function (Baldino et al, 1988; 
Estupina et al, 1996; Knuth et al, 1983; Murray et al, 1999; Werner et al, 1988; Zorilla et al, 
1991). Recent studies demonstrated a clear sex difference in the number and distribution of 
SOM peptide containing cells in the PEVN. In the female numbers were affected by 
ovariectomy and gonadal steroid treatment (Van Vugt et al, 2008).  
During the early phase of reproductive aging, normal (or even elevated) levels of plasma 
estradiol (E2), are correlated with a decline in somatotropic axis activity (Chandrashekar and 
Bartke, 1993; Vom Saal et al, 1994; Wilshire et al, 1995). In 14 months old rats, hypothalamic 
SOM peptide content as well as basal and KCl-stimulated SOM release from the 
hypothalamus were increased compared to young animals (Ge et al, 1989). Compared to 
young female rats, SOM peptide levels in the ME are decreased at 25-29 months of age 
(Takahashi et al, 1987), suggesting increased SOM release from the ME with age. Altogether, 
these data point to the hypothalamic SOM system as a potential candidate to mediate some 
of the concurrent changes in the activity of the reproductive and GH axis with age. 
In the light of the data described above, we set out to study the effects of E2 exposure on 
hypothalamic SOM peptide levels at middle age when an attenuation of the LH surge can be 
found in regularly cycling females. To this end, we measured LH and P release in regularly 
4-day cycling females at young (4 months) and middle-age (8.5 months) on proestrus as well 
as after a stimulus with a potent GnRH analog the following proestrus day. Subsequently, 
animals were ovariectomized to examine the effect of a physiological dose of E2 on SOM-
peptide containing cells in the PeVN at selected time points following estrogen exposure. 
Using this approach, we aimed to gain more insight in the mechanisms underlying the 
interaction between the somatotropic and gonadotropic axis, i.e. a possible role for the 
hypothalamic SOM system. We hypothesize that SOM plays a role in the normal, 
physiological regulation of LH release in the female rat and suggest that changes in the 
response of PeVN SOM-ir with age may contribute to the hypothalamic changes that lead to 
an attenuated LH surge in middle- aged rats. 
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2. Material & methods 

2.1 Animals 

Virgin female (n=60) and male (n=8) Wistar rats (HsdCpb:WU, Wistar Unilever) were 
obtained from Harlan (Horst, NL) at 9 to 10 weeks of age. Rats were group housed (4/cage) 
under regular light-dark cycles (L/D 12:12, lights on at 3:00 h defined as ‘zeitgebertime’ 0, 
ZT0) with free access to standard food pellets (Hope Farms B.V., Woerden, NL) and water. 
Animals were housed individually from 1 week before cannulation onwards. Young and 
Middle-aged females were obtained from the same batch to reduce variation between 
animals. All experiments were approved by the animal experimental committee (DEC) of 
the Wageningen University. 

2.2 Experimental design 

To study changes in proestrous LH and P surge characteristics with age, 4-month-old 

(‘young’) and 8.5-month-old (‘middle-aged’) female rats with regular 4-day cycles were 

used for blood sampling and hormone analyses. Hourly blood samples were taken on 

proestrus to measure plasma LH and P profiles. To investigate pituitary LH and FSH 

responsiveness, a potent GnRH analog (Ovalyse; des-Gly10-GnRH-ethylamide, Upjohn, 

Ede, The Netherlands) was used on the following proestrus. Ovalyse (100 ng in 0.25 ml 

0.9% NaCl (w/v) containing 1% BSA) was administered i.v. immediately after the first blood 

sample was drawn.  

Subsequently, a group of cycling females was ovariectomized (OVX, Van der Beek et al, 

1999) at 4.5 (young) or 9 mo (middle-aged) of age, and given a single s.c. injection with 

estrogen at ZT3 on day 13 following OVX. Animals were perfused 2, 8, 26 or 32 hrs later, i.e. 

at ZT5 and ZT 11. Brains sections were stained for SOM peptide as described previously 

(Van Vugt et al, 2008). 

2.3 Estrous cycle length 

Estrous cycles were monitored by daily vaginal lavage. Lavages were analyzed according to 

criteria described elsewhere (Freeman et al, 1994). In addition, receptive behavior (hopping 

and darting, ear wiggling and lordosis posture) was monitored daily. To this end, a naive 

male WU rat was introduced briefly in the female’s home cage around ZT 11, 1 hr before 

dark onset to confirm a proestrous lavage typing.  

Cycle length was defined by the last two monitored cycles before sampling. Most females 

displayed regular 4-day estrous cycles (70%). Cycle lengthening was observed in 8.5 mo old 

females: regular 4-day cycles decreased from 70% to 45%, while both 5-day cycles (from 10% 

to 24%) and acyclicity (from 0% to 10%) increased. 

2.4 Cannulation and blood sampling 

The right jugular vein of female rats was cannulated to obtain stress-free blood samples 

(Steffens, 1969, Van der Beek et al 1999, Van Vugt et al, 2004). After a recovery period of at 

least five days, ten hourly blood samples of 170 l were taken on proestrus from ZT 5.5-14.5 

for measurement of endogenous, preovulatory hormone profiles. To assess the amount of 

acutely releasable LH by the pituitary gland, ten hourly blood samples of 170 l were drawn 

from ZT 5.5-14.5 on the following proestrus, following an i.v. injection of the GnRH analog 

Ovalyse,  just after the first sample. Blood samples were collected in heparinized, air-dried 

www.intechopen.com



 
Sex Steroids 74

vials (25 IU heparin, Leo Pharma BV, Breda, NL) and centrifuged at 13,000 rpm for 5 

minutes. Plasma was diluted 1:4 for LH and 1:20 for P analysis with PBS buffer (0.02M, pH 

7.5) containing 0.1% BSA, and stored frozen at –20 C until RIA. LH and P plasma levels 

were determined by validated RIAs (Van der Beek et al, 1999, Van der Meulen et al, 1988). 

Only samples from animals that displayed regular 4-day estrous cycles were included in the 

analysis. The inter- and intra-assay coefficients of variation were determined using pooled 

rat serum, and amounted to respectively 12.1% and 10.8 % for the LH assay and 15.8% and 

6.2% for P analysis. 

2.5 Tissue processing, SOM immunocytochemistry & analysis 

Forty-three regularly cycling female rats aged 4.5 (n=20) or 9 (n=23) months were 
ovariectomized and treated with estradiol benzoate before perfusion 2, 8, 26 or 32 hours 
later. The brains were processed for SOM immunocytochemistry as described in detail 
previously (Van der Beek et al, 1991; Van Vugt et al, 2008). Staining was performed in two 
separate runs (4.5 and 9 mo) and intra-assay variation was controlled for by including a 
group of young animals at 2 and 32 h after E2 treatment in the second run. Every third brain 
section containing the PeVN was stained for SOM peptide by free-floating 
immunocytochemistry techniques. For staining, primary polyclonal rabbit antibody raised 
against SOM peptide (Somaar 080289, NIN, Amsterdam, NL) (Buijs et al, 1989) was used 
followed by detection with biotinylated goat anti-rabbit IgG and Avidin-Biotin Complex-
elite (ABC; Vector Laboratories).  
SOM-immunoreactive (-ir) neurons in the PeVN of the left side of the brain were counted 
using computer assisted analysis as described previously (Van Vugt et al, 2008). In addition 
to counting SOM-ir cells, also the amount/quantity of SOM-ir fibers (expressed in µm2) was 
measured in these images in the young females only. To this end, both the fibers that were 
located closely to the SOM cells (the “PeVN region”: measured in an area that had an 
absolute distance from the ventricle of approximately 200 µm) and all fibers that originated 
from SOM cells in the PeVN, including those projecting to the ME (“total fibers”: measured 
in an area that had an absolute distance from the ventricle of approximately 560 µm) were 
counted. The analysis threshold was determined in a representative selection of the images 
by measuring the mean gray level in an area devoid of SOM staining. Next, an upper and a 
lower threshold were determined (mean gray level + 3x S.D.; mean maximal gray level – 3x 
S.D. respectively) excluding SOM-ir cells and very light SOM-ir fibers.  

2.6 Data processing 

To determine the effects of age on the proestrus LH and P surge several profile 
characteristics were defined: i.e. basal levels, onset time, peak time, peak height and the total 
amount of LH and P released. Basal levels were defined as the average concentration of the 
first three blood samples (ZT 5.5,  6.5, and 7.5) per animal. In case of an early rise in LH 
levels, i.e. at ZT 7.5 (n=3), the first two blood samples were used to calculate basal levels. 

Onset time was defined as the sample hour (ZT; mean  SEM expressed as h:min  min) at 
which LH levels exceeded basal LH levels plus 3 x the standard deviation, while LH levels 
continued to rise thereafter. Peak time of the LH surge was defined as the ZT hour at which 
the highest LH concentration was measured. The highest amount of LH measured at that 
time was defined as the peak height. The total amount of LH or P was defined by the 
cumulative value of hormone levels during the complete sampling period. LH levels 
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showed a clear distinction between ‘early’, Ovalyse induced LH release and a second ‘late’ 
increase in LH levels resulting from endogenous proestrous GnRH release. Therefore, LH 

data after Ovalyse administration were divided in ZT 5.5-8.5 (‘early’) and ZT 9.5-14.5 
(‘late’). For ‘late’ release, LH peak time and LH peak height were determined as described 
above. Finally, total LH levels during the complete sampling period were calculated. As 
proestrous P release continuously increased but did not peak in the time window evaluated, 
only basal level, preovulatory surge level, and total amount released were assessed. 

2.7 Statistics 

Hormone levels were expressed as mean  SEM and analyzed using SPSS (version 12.0).  

Differences were considered to be significant when P<0.05. Basal LH levels, onset time and 

peak time of the LH surge, LH peak height, and basal P levels from proestrus 

measurements, as well as LH peak height and total LH levels following Ovalyse® were 

tested with the nonparametric Kruskal-Wallis test and were post-hoc tested using the Mann-

Whitney test. Changes with age in the total amount of LH and P released during the 

proestrous surge, preovulatory P surge levels as well as LH peak height of the induced LH 

surge and total LH levels following Ovalyse®) were tested by one-way ANOVA. To 

compare the total number of SOM-ir cells between the different time points following E2 

treatment, one-way ANOVAs were used. A Bonferroni or Tukey HSD test was used as post 

hoc test.  

3. Results 

3.1 Proestrous LH profiles 

The general profile of the LH surge was comparable between ages. Basal plasma LH levels 

averaged 0.3 to 0.4 ng/ml and onset of the surge occurred around ZT9.5, where after LH 

levels increased rapidly and reached peak levels around ZT12. Subsequently, LH levels 

gradually declined. We found a significant decrease in LH peak and total LH levels with age 

(P=0.041 and P = 0.035, respectively) (Table 1). Pearson correlation tests showed that the 

magnitude of the LH surge (i.e. total LH levels) correlated with onset and height of the LH 

surge (LH onset time: r=-0.527 with P < 0.001; LH peak levels: r=0.924 with P < 0.001).  

 

 

Table 1. Proestrous LH and P surge characteristics of young and middle-aged 4-day cyclic 
WU rats. Basal levels are depicted as the average concentration ZT 5.5-7.5, onset time of the 
LH surge (ZT at which LH levels exceeded basal levels plus 3xSD), peak time of the LH 
surge (ZT at which the highest concentration was measured), peak height of the LH surge 
(highest concentration measured), preovulatory P surge levels (cumulative value from ZT 
8.5-14.5), and the total amount of LH or P released during the surge (cumulative value 

during the complete sampling period). All data are expressed as group means  SEM in 
ng/ml (concentrations) or h:min (time). Significant differences (P < 0.05) between young and 
middle aged with ages are indicated with an asterisk. 

basal onset time peak time peak height total basal surge total

4 12 0.3 ± 0.1 9:43 ± 0:30 12:06 ± 0:20 12.8 ± 1.4 40.2 ± 4.5 24.9 ± 2.6 339.4 ± 28.8 414.2 ± 35.9

8.5 9 0.4 ± 0.1 9:37 ± 0:23 11:37 ± 0:19 8.3 ± 1.4* 25.2 ± 4.6* 23.2 ± 5.0 329.0 ± 64.6 398.6 ± 78.7

LH surgeage 

(mo)
n

P surge
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3.2 Proestrous P levels  

Plasma P levels increased gradually during proestrus, but did not show a distinct peak 
during the time window evaluated. Basal P levels defined by LH release characteristics 
showed no significant differences between groups and age did not affect P profiles (Table 1). 
Total P levels correlated significantly with basal P levels (r=0.876 with P < 0.001) and with P 
surge levels (r=0.992 with P < 0.001), in line with the observed elevation in P levels during 
the entire sampling period. 

3.3 Pituitary responsiveness 

Administration of Ovalyse at ZT 5.5 resulted in a rapid and consistent increase in LH 
plasma levels irrespective of age (Table 2). Highest plasma LH levels were measured at 1 or 

2 h after Ovalyse administration and decreased thereafter (defined as the ‘early’, induced 
LH surge). After ZT 8.5, LH levels increased again (defined as the ‘late’, endogenous LH 
surge).  

LH levels were of comparable magnitude at 1 and 2 h after Ovalyse injection between 4 
and 8.5 months old females. Also, the second, endogenous LH surge was comparable in 
magnitude (peak height and total LH levels) between groups and accompanied by a gradual 
increase in P levels comparable between ages.  
 

 

Table 2. LH and P surge characteristics following Ovalyse® administration in young and 
middle-aged 4-day cyclic rats on proestrus. The surge was divided into a ‘early’ part (ZT<9; 
‘induced’ surge) and a ‘late’ surge (ZT>9; ‘endogenous’ surge). Measured characteristics: 
peak height of the ‘early’ and ‘late’ LH surge (the highest concentration measured), and the 
total amount of LH or P released during the ‘early’ and ‘late’ and the entire sampling period 
(cumulative LH or P levels during the corresponding sampling periods). All data are 

expressed as group means  SEM in ng/ml (concentrations).  

3.4 SOM-ir cells and fibers in the PeVN 

Total numbers of SOM-ir cells were roughly comparable between age groups (Figure 1). In 

the young animals, SOM-ir numbers were not significantly affected by time after E2 

treatment, although they appeared to be consistently lower at ZT5 compared to ZT11 

(Figure 1A). In middle-aged rats, total numbers of SOM-ir cells were significantly lower at 

ZT 5 on day 1 compared to day 2 (Figure 1B). 

SOM-ir cells within the PeVN showed a clear rostro-caudal distribution pattern, with 
maximal numbers of cells appearing in the more caudal part of the PeVN. The distribution 
in young females varied slightly over the different time points after E2 treatment: maximal 
numbers of SOM-ir cells were found consistently in PeVN section 8 at ZT5, but in PeVN 
section 7 at ZT11 on both days (Figure 2A and B). In middle aged female, the rostro-caudal 
distribution pattern in the number of SOM-ir cells at ZT 5 on day 1 (Figure 2C) was absent, 
e.g. the number of SOM-ir cells was comparable between PeVN sections. Distribution 

all samples <ZT9 >ZT9 all samples

peak height total peak height total total total total total

4 12 30.0 ± 1.6 66.9 ± 2.5 14.8 ± 1.7 48.9 ± 5.4 115.9 ± 6.0 172.9 ± 12.2 365.5 ± 30.3 538.3 ± 42.0

8.5 10 31.0 ± 3.1 63.4 ± 7.2 16.3 ± 2.2 55.0 ± 7.7 118.4 ± 12.6 157.8 ± 17.9 338.2 ± 45.6 496.0 ± 61.9

LH following Ovalyse®

 <ZT9 >ZT9
age 

(mo)
n

P following Ovalyse®
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patterns at other time points were in general comparable with those found in the young rats, 
i.e. maximal numbers of SOM-ir cells in PeVN section 7 at ZT 11 and in PeVN section 8 at 
ZT 5 on day 2 (Figure 2D).  
 

 
 

Fig. 1. Total number of SOM-ir cells (sum of PeVN sections 4-8) in young (4.5 months old) 
and middle aged (9 mo old) Wistar rats at different time points after E2 treatment. ZT 5: 2 
(day 1) or 26 (day 2) h after E2 treatment, ZT 11: 8 (day 1) or 32 (day 2) h after E2 treatment. 
n=5 for each young age group, numbers within base of bars indicate the number of animals.  

 

 
 

Fig. 2. Rostral to caudal distribution of SOM-ir cells in the PeVN of young (4.5 months old)  
(A and B) and middle aged (C and D) OVX females at different time points after E2 
treatment. Numbers within base of bars indicate the number of animals. 
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In young animals, the area occupied by SOM-ir fibers in the PeVN region was significantly 
different at ZT5 on day 1 compared to ZT11 day 2 (Figure 3A). The total area of SOM-ir 
fibers, i.e. including the fibers projecting to the ME, was significantly different between ZT5 
and ZT11 on both days (Figure 3B). 
 

 
 

Fig. 3. Area of SOM-ir fibers in the PeVN region (A) or total SOM-ir area (B) in young (4.5 
months old) OVX female Wistar rats at different time points after E2 treatment. a 
significantly different from b (p=0.047; Bonferroni); c significantly different from d (p ≤ 0.05; 
Tukey HSD). n=5 for each group. 

4. Discussion 

In the present study we showed that in adult female rats, the effects of E2 on SOM-ir cell 

distribution and SOM-ir numbers in the PeVN were age dependent. Estrogen did not affect 

total numbers of SOM-ir cells in the PeVN of young female rats in line with our previous 

studies (Van Vugt et al, 2008) and those of others (Estupina et al, 1996). Other studies 

reported a decrease in SOM mRNA content in the PeVN following OVX which was reversed 

by E2 treatment (Baldino et al, 1988; Zorilla et al, 1991). In these studies, however, animals 

were treated with E2 for a prolonged period of time, whereas we studied the effect of a 

single physiological dose of E2 on SOM peptide-containing cells on multiple time points 

following the estrogen exposure. Interestingly, the amount of SOM-ir fibers within the 

PeVN region of young females was decreased at 32 h compared to 2 h after E2, which may 

suggest increased release of SOM peptide from the PeVN or decreased transport from cells 

to the fibers, apparently without affecting the amount of SOM peptide synthesized and/or 

stored in the PeVN cells. Prior to measuring SOM peptide responsiveness to an estrogen 

stimulus we showed that the attenuation of the LH surge at middle-age was not 

accompanied by a decrease in proestrus P levels or a decrease in pituitary LH 

responsiveness to a GnRH analog. These results clearly suggest that the attenuation of the 

LH surge is not initiated by alterations at the level of the ovary or pituitary gland, but rather 

the result of changes in response to ovarian feedback at the hypothalamic level as found for 

SOM peptide in this study. Subsequent experiments in the brain material obtained from 

these animals are now focusing on studying potential changes in hypothalamic estrogen and 

progesterone receptor immunoreactivity. 
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4.1 Reproductive aging and the pituitary gland 

The attenuation of the natural LH surge at 8.5-months old is in accordance with previous 
reports concerning other rat strains (Brito et al, 1984; DePaolo et al, 1986; Krieg et al, 1995; 
Nass et al, 1984). Some studies suggested that the decrease in proestrus LH levels with age 
may follow changes at the level of the pituitary gland, such as changes in LH storage and/or 
release capacity (Matt et al, 1998; Wise et al, 1984). The results of the present study, however, 
suggest that this is not the case. Although the timing of GnRH analog administration was 
early (i.e. 3 to 4 hours before the natural LH surge occurred), no age-related differences in 
total and peak LH levels of the ‘induced’ LH surge (until ZT9) were observed. This implies 
that LH responsiveness to a bolus of GnRH is comparable between 4- and 8.5-month-old 
rats. Others did show that the acutely releasable pool of LH was reduced at the age of 9-12 
months in cyclic Sprague-Dawley rats (Brann and Mahesh, 2005; Wise et al, 1984). In 
addition, pituitary responsiveness to GnRH in vitro is decreased in 10-12 month-old Long-
Evans rats that show attenuated LH surges (Brito et al, 1994), and in pituitaries from 9- 
compared to 4-month-old Wistar rats that were tested in a superfusion system in our lab 
(Keizer et al, 2001). Since the age-related reduction in LH release after GnRH stimulation 
was more evident during the second and third stimulus in all studies, this suggests that the 
GnRH priming mechanism may be particularly affected.  
Yet, we found no age-related differences in total LH levels of the ‘late’, ‘endogenous’ LH surge 

that results from endogenous GnRH release. Since the LH surge requires repeated pulses of 

GnRH to induce full pituitary priming, the absence of these age-related changes in this study 

suggest that GnRH priming is not significantly affected in our 8.5-month-old rats. The time 

between GnRH stimuli, however, differs between endogenous GnRH release (~1 hour 

between pulses) and our stimulus with the long-acting GnRH-analog Ovalyse® (~3 hours). 

Altogether, these results indicate that in our 8.5-month-old females, the attenuation of the LH 

surge is not caused by a diminished responsiveness of LH to initial GnRH signaling, although 

reproductive aging may eventually result in a decrease in the releasable pool of LH (Wise et al, 

1984) and impaired GnRH priming (Brito et al,1994; Keizer et al, 2001). 

4.2 Reproductive aging and the ovary 

In the present study we showed that proestrous P levels were comparable between 4- and 

8.5-month-old rats, and thus do not underlie the observed attenuation of the LH surge. In 

contrast, another study (Miller and Riegle, 1980) showed that the attenuated preovulatory 

LH surge was accompanied by an attenuated P surge in 12-month-old cyclic Long-Evans 

rats. It has been suggested that attenuated P levels result from a decrease in proestrous LH 

levels, although increased responsiveness of the ovary to hCG stimulation in regular cyclic 

middle-aged compared has been reported for Long-Evans rats (Chern et al, 2000). 

Consequently, the lack of concurrent changes in P and LH release in our rats could be 

explained by an increased responsiveness to LH stimulation.  

4.3 Reproductive aging and the hypothalamus 

Based on these data, we hypothesize that the initial attenuation of the LH surge is indeed 
initiated by alterations at the hypothalamic level (i.e. GnRH release), and not at the pituitary 
gland (i.e. responsiveness to GnRH, GnRH priming) or the ovary (P levels).  
A previous study by Rubin (Rubin, 1992) showed that the secretory capacity of the GnRH 

system is still intact in middle-aged rats, but that the LH secretion per GnRH burst during 
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the LH surge appears to decrease with age (Matt et al, 1998). This is thought to be the result 

of a decreased activity of the GnRH system, a reduced responsiveness to GnRH signaling, 

and/or a reduction in cellular LH with age (Matt et al, 1998; Rubin et al, 2000). Also, the 

GnRH neuroterminal-glial-capillary unit in the ME may be affected, influencing the 

regulation of GnRH release (Yin et al, 2009). There are no indications that the number of 

pituitary GnRH receptors is affected with age in female mice (Belisle et al, 1990) and our 

results after Ovalyse® administration suggest that the responsiveness to (robust) GnRH 

signaling is still intact. Indeed, several studies demonstrated that on proestrus the number 

of activated GnRH neurons (Wise et al, 2002; Rubin et al, 1994) and endogenous GnRH 

release (Rubin et al, 2000) are reduced in middle-aged female rats. The activity of GnRH 

neurons is regulated by many different neural signals (Smith and Jennes, 2001) and several 

of the systems involved in the regulation of the GnRH surge are also affected with age (Wise 

et al, 2002;  Sahu et al, 1998; Gore et al, 2002; Mills et al, 2002). Taken together, this suggests 

that the input onto GnRH neurons may change with age, resulting in less activated GnRH 

neurons and reduced GnRH release that together with a reduction in endogenous GnRH 

priming could indeed lead to an attenuated LH surge. Previous studies have proposed a 

contribution of the suprachiasmatic nucleus (SCN) in the attenuation of the LH release surge 

(Wise et al, 2002; Downs and Wise 2009). Yet, we did not find any significant changes in 

timing of the LH surge (i.e. LH surge onset and/or peak levels) in middle-aged rats. Since a 

clear delay in timing of the LH surge at the age of 7-10 months has only been shown in 

Sprague-Dawley rats (Sahu et al, 1998; Wise, 1982), the age at which changes in SCN output 

influence the LH surge mechanism may be strain specific. 

4.4 Effect of SOM on the reproductive axis 

Previous studies provide evidence for a proposed central role of hypothalamic SOM neurons 
in the functional interaction between the somatotropic and gonadotropic axis. Octreotide, 
given during the “critical period” of the day (i.e. just prior to surge onset), completely 
abolished the E2-induced LH surge and decreased GnRH cell activation (Van Vugt et al, 2004). 
Based on this, and the fact that SOM release may increase on proestrous afternoon (Estupina et 
al, 1983; Knuth et al, 1983; Zorilla et al, 1991), we hypothesize that in the cycling female rat, 
SOM release probably increases only after the “critical period”, i.e. during the LH surge. Thus, 
we suggest that elevated levels of SOM on proestrous afternoon may be involved in the 
descending, rather than the ascending, phase of the preovulatory LH surge.  
Our previous studies strongly suggest that SOM decreases LH release at least in part by 
decreasing hypothalamic GnRH neuron activation (Van Vugt et al 1994). However, the 
mechanism behind this action remains speculative. Moreover, indirect effects of SOM 
cannot be excluded, as SOM was demonstrated to directly affect gonadotropic cell number 
and morphology (Lovren et al. 1998). Here we propose three possible pathways via which 
SOM, originating from the PeVN, may affect GnRH neurons, resulting in a decreased LH 
release (see Figure 4).  
The interactions between neurons in the hypothalamic areas involved in the regulation of 

LH (Preoptic Region, OVLT/POA) and GH (PeVN and Arcuate nucleus ARC) release are 

schematically depicted in Figure 4-I. GnRH neurons in the OVLT/POA are innervated by 

gamma-aminobutyric acid (GABA)-ergic cells, which are thought to be involved in the 

negative feedback of E2 on the LH surge (Miller et al, 2003; Zhen et al, 1997). These GABA-

ergic cells originating from the OVLT/POA innervate SOM neurons in the PeVN and may 
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therefore also be involved in the regulation of GH release from the pituitary (Herbison et al, 

1994; Murray et al, 1999; Rage et al, 1993; Willoughby et al, 1987). Also, within the PeVN, a 

small number of SOM neurons co-express GABA (Tanaka et al, 1997). GHRH neurons in the 

ARC are inhibited by SOM neurons originating from either the PeVN or the ARC (McCarty et 

al, 1992; Lanneau et al, 2000; Tannenbaum et al, 1990; Willoughby et al, 1989). Neuropeptide-Y 

(NPY) terminals originating from the ARC project to the preoptic region and ME, in which 

some of the axons make synaptic contacts with GnRH cell bodies and processes (Smith and 

Jennes, 2003). Also, NPY cells may project to SOM cells within the PeVN. NPY may hence be 

involved in the regulation of both LH and GH release from the pituitary. 

4.4.1 Pathway 1: SOM projections to neurons in the OVLT/POA 

We showed that a centrally injected SOM analog decreased hypothalamic GnRH cell 

activation (Van Vugt et al, 2004), suggesting that SOM directly affects cells in the 

OVLT/POA. The fact that SSTRs were demonstrated in the OVLT/POA (Helboe et al, 

1998; Schindler et al, 1996), and that lesions of the anterior hypothalamic area (including 

the PeVN) resulted in decreased SOM peptide levels in the POA (Epelbaum et al, 1977), 

suggests that SOM cells originating from the PeVN project to the OVLT/POA. Possibly, 

GnRH neurons themselves express SSTRs, so SOM may directly inhibit GnRH cell 

activation, leading to the supposed decrease in GnRH release, and hence to decreased LH 

release from the pituitary (pathway A in Figure 4-II). Alternatively, cells, other than 

GnRH-producing, in the OVLT/POA may contain SSTRs. Neurons in the periventricular 

POA that project to GnRH neurons at the time of the preovulatory LH surge (Le et al, 

1997; 1999; 2001) are a likely candidates. Although not identified yet, GABA-ergic cells 

may be (one of) these neurons containing SSTRs and projecting to the GnRH neurons 

(pathway B in Figure 4-II).  

4.4.2 Pathway 2: SOM effects on LH release indirectly via NPY 

NPY is very likely to influence the preovulatory LH surge: NPY synthesis and release are 

elevated just before the proestrous LH surge, and immunoneutralization of NPY prevents 

the steroid-induced LH surge. The effects of NPY on LH release may, at least in part, take 

place at the hypothalamic level, as NPY terminals synapse on GnRH cell bodies and 

processes (Smith and Jennes, 2003). As SSTRs were demonstrated on NPY cells in both the 

PeVN and ARC (Lanneau et al, 2000), SOM may inhibit NPY neurons activity, resulting in a 

decreased stimulating signal to GnRH cells, which in turn decreases GnRH cell activation 

and release, leading to the observed decreased LH surge (Figure 4-III). 

4.4.3 Pathway 3: SOM effects pituitary LH release indirectly 

Besides the decreased LH surge, we also found decreased plasma GH concentrations 

following the centrally injected SOM analog (Van Vugt et al, 2004). SOM was shown to 

directly decrease LH release (Yu et al, 1997) and affect gonadotroph cell number and 

morphology (Lovren et al, 1998). Moreover, both gonadotrophs and somatotrophs express 

SSTRs. Hence, SOM may directly decrease both LH and GH release from the pituitary. The 

decrease in GH release leads to decreased IGF-I release, which may subsequently result in a 

decreased GnRH release from the ME (Miller et al, 2003; Zhen et al, 1997) (pathway C in 

Figure 4-IV). 
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Fig. 4. Schematic drawings of the three proposed pathways via which SOM originating from 

the PeVN may decrease the LH surge. I: interactions between neurons in the OVLT/POA, 

PeVN and ARC as described in literature. II: direct effect of SOM on neurons in the 

OVLT/POA; A: directly on GnRH neurons; B: indirectly via cells projecting to GnRH 

neurons. III: indirect effect of SOM on GnRH neurons via NPY cells in the ARC. IV: indirect 

effect of SOM on GnRH neurons via the pituitary; C: direct effect of SOM on LH and GH 

cells; D: indirect effect of SOM on pituitary cells via GHRH neurons in the ARC. For more 

details: see text. Black circles represent SSTRs. 

Alternatively, elevated SOM levels may inhibit GHRH neurons in the ARC (McCarty et al, 

1992; Lanneau et al, 2000; Tannebaum et al, 1990; Willoughby et al, 1989), resulting in 

decreased GH release from the pituitary. As somatotroph and gonadotroph cell co-

expression in the pituitary is maximal on the day of proestrus (Childs, 2000; Childs et al, 

2000; 1994), a decreased activation of GH cells may lead to decreased activity of LH cells, 

consequently resulting in a decreased LH release. In addition, decreased IGF-I levels, due to 

decreased plasma GH concentrations, may lead to both decreased LH release from the 

pituitary (Kanematsu et al, 1991) and decreased GnRH release from the ME (Miller et al 

2003; Zhen et al, 1997) (pathway D in Figure 4-IV).   
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Although direct effects of SOM at the pituitary level in the regulation of the LH surge 
(pathway 3) cannot be excluded, in the cycling female rat this pathway seems very unlikely 
to be the primary one with respect to hypothalamic regulation of the preovulatory LH 
surge. We suggest that the direct effects of SOM at the level of the pituitary may be 
additional to the effects at the level of the hypothalamus concerning the proposed 
interaction with the reproductive axis. Also, the suggested role for NPY in the hypothalamic 
regulation of the LH surge in the female rat (pathway 2) is probably one of the factors in a 
complex regulatory mechanism. In the light of our own data and data from literature, we 
propose that the role of SOM in the regulation of the descending phase of the LH surge, may 
involve, at least, a combination of pathways 1 and 2. In the cycling female rat, elevated 
plasma concentrations of E2 and P on the day of proestrus may increase NPY levels in the 
ARC that, together with the removed inhibitory GABA-ergic tone (Smith and Jennes, 2003), 
stimulate GnRH cell activation, leading to the GnRH surge and, subsequently, the 
preovulatory LH surge. Secondly, the increased levels of gonadal steroids (Estupina et al, 
1996, Van Vugt et al, 2008), and in addition, elevated levels of NPY (Rettori et al, 1990) may 
increase SOM release from the ME. Elevated concentrations of SOM, in turn, inhibit either 
neuron activity in the OVLT/POA, or NPY and its stimulating effects on GnRH neurons, or 
both, leading to decreased GnRH cell activation and subsequently release, finally resulting 
in a decrease in plasma LH levels (see figure 2). 
 

 

Fig. 5. Proposed mechanism via which hypothalamic SOM may be involved in the 
regulation of the descending phase of the preovulatory LH surge in the female rat 

4.5 Age dependent effects of estrogen on PeVN SOM peptide 

In young rats, the rostrocaudal distribution profiles of SOM-ir cells within the PeVN were 
comparable between ZT5 as well as ZT11 on the two subsequent days after E2 treatment. In 
addition, the total SOM-ir fiber area, was consistently higher at ZT5 compared to ZT11 in 
these animals. These findings suggest that SOM peptide synthesized in the PeVN and 
released in the ME may be influenced by diurnal rhythms. Our data are supported by a 
study that reported a diurnal rhythm in SOM peptide content in the ME (Esquifino et al, 
2004). Moreover, SOM peptide levels in the cortex, anterior hypothalamus and 
suprachiasmatic nucleus (SCN) (Fukuhara et al, 1993), and SOM release from the 
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hypothalamus (Berelowitz et al, 1982) were demonstrated to show circadian rhythmicity 
and suggest that the SCN may play a role in this diurnal change in SOM peptide transport 
from the PeVN to the ME. Thus, our data suggest that in the young female Wistar rat SOM 
cells in the PeVN are influenced by at least the SCN and E2. E2 may affect intrahypothalamic 
SOM projections within the PeVN or to other hypothalamic areas that contain SOM 
receptors (Beaudet et al, 1995; Hervieu et al, 1999), whereas SOM release from the ME may 
be influenced by the SCN. SOM content and release from hypothalamic explants is 
influenced by sex and age (Ge et al, 1989). The rostro-caudal distribution pattern of SOM-ir 
cells and the total number of SOM-ir cells in the PeVN was different in the middle-aged 
compared to young rats, but only 2 h after E2 treatment. These findings suggest that with 
age, E2 may become more crucial for the synthesis and/or storage of SOM peptide in the 
PeVN and affect the diurnal change in SOM levels within the PeVN.  
The function of a diurnal change in SOM levels in the PeVN remains speculative. A few 
studies reported more pronounced GH secretory bursts in cycling female rats after the onset of 
darkness (Clark et al, 1987; Pincus et al, 1996), suggesting that the shift in the rostro-caudal 
SOM cell distribution at ZT11, i.e. just before dark onset, may reflect this shift in GH secretion 
pattern. Although to our knowledge no data exist on light/dark-related GH secretory patterns 
during aging, mean plasma GH levels and mean peak GH levels were found to be decreased 
already in 11 month old compared to young females (Takahashi et al, 1987). Taking these 
findings into consideration, we suggest that the changes in SOM-ir levels within the PeVN 
may translate into changes in GH release patterns during aging in female rats.   

5. Conclusion 

In the present study we clearly demonstrate a significant attenuation of the LH surge at the 
age of 8.5 compared to 4 months old regular 4-day cycling females. This attenuation of the 
LH surge was not accompanied by changes in the releasable pool of LH, timing of the surge, 
GnRH priming or preovulatory P levels, supporting the notion that an attenuation of the LH 
surge may result from a change in the hypothalamic drive. Strikingly, we found clear 
changes in hypothalamic SOM peptide regulation following a physiological dose of estrogen 
in middle-aged animals. We hypothesize that the age dependent effects of an E2 stimulus on 
SOM-ir cell distribution and SOM-ir numbers indicate alterations in the regulation of 
hypothalamic SOM peptide release in response to estrogen feedback could underlie an 
attenuation of the LH surge with age. These observations suggest that changes in the 
regulation of the GH axis with age indeed coincide with the process of reproductive aging in 
the female rat and suggest that the proposed interaction between these neuroendocrine axes 
may occur via alterations in hypothalamic somatostatin release. 
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