159 research outputs found

    Global Change Can Make Coastal Eutrophication Control in China More Difficult

    Get PDF
    Fast socio-economic development in agriculture and urbanization resulted in increasing nutrient export by rivers, causing coastal eutrophication in China. In addition, climate change may affect hydrology, and as a result, nutrient flows from land to sea. This study aims at a better understanding of how future socio-economic and climatic changes may affect coastal eutrophication in China. We modeled river export of total dissolved nitrogen (TDN) and phosphorus (TDP) in 2050 for six scenarios combining socio-economic pathways (SSPs) and Representative Concentration Pathways (RCPs). We used the newly developed MARINA 2.0 (Model to Assess River Inputs of Nutrients to seAs) model. We found that global change can make coastal eutrophication control in China more difficult. In 2050 coastal waters may be considerably more polluted or considerably cleaner than today depending on the SSP-RCP scenarios. By 2050, river export of TDN and TDP is 52% and 56% higher than in 2012, respectively, in SSP3-RCP8.5 (assuming large challenges for sustainable socio-economic development, and severe climate change). In contrast, river export of nutrients could be 56% (TDN) and 85% (TDP) lower in 2050 than in 2012 in SSP1-RCP2.6 (assuming sustainable socio-economic development, and low climate change). Climate change alone may increase river export of nutrients considerably through hydrology: We calculate 24% higher river export of TDN and 16% higher TDP for the SSP2 scenario assuming severe climate change compared to the same scenario with low climate change (SSP2-RCP8.5 vs. SSP2-RCP2.6). Policies and relevant technologies combining improved nutrient management and climate mitigation may help to improve water quality in rivers and coastal waters of China.</p

    Series: Public engagement with research. Part 3: Sharing power and building trust through partnering with communities in primary care research

    Get PDF
    Background : This article focuses on potential strategies to support primary care researchers in working in partnership with the public and healthcare professionals. Partnership working can potentially to improve the relevance and usefulness of research and ensure better research and health outcomes. Discussion : We describe what we mean by partnership working and the importance of reflecting on power and building trusting relationships. To share power in partnership working, it is essential to critically reflect on the multiple dimensions of power, their manifestations, and your own power. Power can influence relationships and therefore, it is essential to build trust with partners. Next, we outline how the context of primary care research and decisions about who you work with and how to work together, are vital considerations that are imbued with power. Lastly, we suggest different ways of working in partnership to address different dimensions of power. We provide examples from primary care research across Europe regarding how to recognise, tackle, and challenge, invisible, hidden and visible power. Conclusion : We conclude by proposing three calls to actions to encourage researchers working in primary care to consider the multiple dimensions of power and move towards partnership working. First is to use participatory methods to improve the inclusivity of your research. Second is to include patients and the public in decisions about the design, delivery and development of research and its outcomes. Third is to address various systemic and institutional barriers which hinder partnership working

    Recent advancement in water quality indicators for eutrophication in global freshwater lakes

    Get PDF
    Eutrophication is a major global concern in lakes, caused by excessive nutrient loadings (nitrogen and phosphorus) from human activities and likely exacerbated by climate change. Present use of indicators to monitor and assess lake eutrophication is restricted to water quality constituents (e.g. total phosphorus, total nitrogen) and does not necessarily represent global environmental changes and the anthropogenic influences within the lake's drainage basin. Nutrients interact in multiple ways with climate, basin conditions (e.g. socio-economic development, point-source, diffuse source pollutants), and lake systems. It is therefore essential to account for complex feedback mechanisms and non-linear interactions that exist between nutrients and lake ecosystems in eutrophication assessments. However, the lack of a set of water quality indicators that represent a holistic understanding of lake eutrophication challenges such assessments, in addition to the limited water quality monitoring data available. In this review, we synthesize the main indicators of eutrophication for global freshwater lake basins that not only include the water quality constituents but also the sources, biogeochemical pathways and responses of nutrient emissions. We develop a new causal network (i.e. multiple links of indicators) using the DPSIR (drivers-pressure-state-impact-response) framework that highlights complex interrelationships among the indicators and provides a holistic perspective of eutrophication dynamics in freshwater lake basins. We further review the 30 key indicators of drivers and pressures using seven cross-cutting themes: (i) hydro-climatology, (ii) socio-economy, (iii) land use, (iv) lake characteristics, (v) crop farming and livestock, (vi) hydrology and water management, and (vii) fishing and aquaculture. This study indicates a need for more comprehensive indicators that represent the complex mechanisms of eutrophication in lake systems, to guide the global expansion of water quality monitoring networks, and support integrated assessments to manage eutrophication. Finally, the indicators proposed in this study can be used by managers and decision-makers to monitor water quality and set realistic targets for sustainable water quality management to achieve clean water for all, in line with Sustainable Development Goal 6

    Salinity impacts on irrigation water-scarcity in food bowl regions of the US and Australia

    Get PDF
    Irrigation water use and crop production may be severely limited by both water shortages and increased salinity levels. However, impacts of crop-specific salinity limitations on irrigation water scarcity are largely unknown. We develop a salinity-inclusive water scarcity framework for the irrigation sector, accounting for crop-specific irrigation water demands and salinity tolerance levels and apply it to 29 sub-basins within two food bowl regions; the Central Valley (CV) (California) and the Murray–Darling basin (MDB) (Australia). Our results show that severe water scarcity (levels >0.4) occurs in 23% and 66% of all instances (from >17 000 monthly crop-specific estimates) for the CV and MDB, respectively. The highest water scarcity levels for both regions occurred during their summer seasons. Including salinity and crop-specific salinity tolerance levels further increased water scarcity levels, compared to estimations based on water quantity only, particularly at local sub-basin scales. We further investigate the potential of alleviating water scarcity through diluting surface water with lower saline groundwater resources, at instances where crop salinity tolerance levels are exceeded (conjunctive water use). Results from the CV highlights that conjunctive water use can reduce severe water scarcity levels by up to 67% (from 946 monthly instances where surface water salinity tolerance levels were exceeded). However, groundwater dilution requirements frequently exceed renewable groundwater rates, posing additional risks for groundwater depletion in several sub-basins. By capturing the dynamics of both crops, salinity and conjunctive water use, our framework can support local-regional agricultural and water management impacts, on water scarcity levels

    Climate-change impacts and adaptation for Pakistan’s irrigated agriculture

    Get PDF
    Pakistan is one of the most vulnerable counties in terms climate-change impacts on its agricultural productivity. Agriculture is not only the largest sector in Pakistan’s economy, the food security of its over 220 million inhabitants also strongly depends on its production. As Pakistan’s arid croplands are extensively irrigated, agricultural productivity is affected by increasing temperatures (projected to increase up to 6°C between 2000 and 2100 under a limited climate-change mitigation scenario), changes in water availability (i.e. river streamflow and groundwater resources) and atmospheric carbon dioxide concentrations ([CO2]; affecting both crop productivity and water use efficiency). Here we present the impacts of climate change on Pakistan’s primary cereal crops: wheat and rice. Impacts are quantified by combining several climate-change scenarios with a process-based coupled hydrological-crop model, VIC-WOFOST. VIC-WOFOST comprehensively estimates changes in crop growth, water resources and their interactions under climate change. Moreover, the role of elevated [CO2] on agricultural productivity and sustainable water use is specifically assessed. We then explore the possibilities and limitations of agricultural adaptation to enable sustainable food security for Pakistan under various climate-change and population growth scenarios. Our results show that climate-change will severely affect Pakistan’s agriculture, especially due increased temperatures and crop heat stress. However, climate-change adaptation can potentially mitigate some of these effects, especially for wheat production. Moreover, with sufficient agricultural adaptation, climate-change can even be beneficial for Pakistan’s agriculture due to the benefits of elevated [CO2]. While our study is focussed on Pakistan, it indicates pathways for sustainable food production under climate change that may also be important for other regions that strongly depend on irrigated agriculture

    China's coal-fired power plants impose pressure on water resources

    Get PDF
    Coal is the dominant fuel for electricity generation around the world. This type of electricity generation uses large amounts of water, increasing pressure on water resources. This calls for an in-depth investigation in the water-energy nexus of coal-fired electricity generation. In China, coal-fired power plants play an important role in the energy supply. Here we assessed water consumption of coal-fired power plants (CPPs) in China using four cooling technologies: closed-cycle cooling, once-through cooling, air cooling, and seawater cooling. The results show that water consumption of CPPs was 3.5 km3, accounting for 11% of total industrial water consumption in China. Eighty-four percent of this water consumption was from plants with closed-cycle cooling. China's average water intensity of CPPs was 1.15 l/kWh, while the intensity for closed-cycle cooling was 3-10 times higher than that for other cooling technologies. About 75% of water consumption of CPPs was from regions with absolute or chronic water scarcity. The results imply that the development of CPPs needs to explicitly consider their impacts on regional water resources

    Current wastewater treatment targets are insufficient to protect surface water quality

    Get PDF
    The quality of global water resources is increasingly strained by socio-economic developments and climate change, threatening both human livelihoods and ecosystem health. With inadequately managed wastewater being a key driver of deterioration, Sustainable Development Goal (SDG) 6.3 was established to halve the proportion of untreated wastewater discharged to the environment by 2030. Yet, the impact of achieving SDG6.3 on global ambient water quality is unknown. Addressing this knowledge gap, we develop a high-resolution surface water quality model for salinity as indicated by total dissolved solids, organic pollution as indicated by biological oxygen demand and pathogen pollution as indicated by fecal coliform. Our model includes a novel spatially-explicit approach to incorporate wastewater treatment practices, a key determinant of in-stream pollution. We show that achieving SDG6.3 reduces water pollution, but is still insufficient to improve ambient water quality to below key concentration thresholds in several world regions. Particularly in the developing world, reductions in pollutant loadings are locally effective but transmission of pollution from upstream areas still leads to water quality issues downstream. Our results highlight the need to go beyond the SDG-target for wastewater treatment in order to achieve the overarching goal of clean water for all

    Mapping global hotspots and trends of water quality (1992–2010): a data driven approach

    Get PDF
    Clean water is key for sustainable development. However, large gaps in monitoring data limit our understanding of global hotspots of poor water quality and their evolution over time. We demonstrate the value added of a data-driven approach (here, random forest) to provide accurate high-frequency estimates of surface water quality worldwide over the period 1992-2010. We assess water quality for six indicators (temperature, dissolved oxygen, pH, salinity, nitrate-nitrite, phosphorus) relevant for the sustainable development goals. The performance of our modeling approach compares well to, or exceeds, the performance of recently published process-based models. The model’s outputs indicate that poor water quality is a global problem that impacts low-, middle- and high-income countries but with different pollutants. When countries become richer, water pollution does not disappear but evolves. Water quality exhibited a signif icant change between 1992 and 2010 with a higher percentage of grid cells where water quality shows a statistically significant deterioration (30%) compared to where water quality improved (22%)

    Global water scarcity including surface water quality and expansions of clean water technologies

    Get PDF
    Water scarcity threatens people in various regions, and has predominantly been studied from a water quantity perspective only. Here we show that global water scarcity is driven by both water quantity and water quality issues, and quantify expansions in clean water technologies (i.e. desalination and treated wastewater reuse) to ‘reduce the number of people suffering from water scarcity’ as urgently required by UN’s Sustainable Development Goal 6. Including water quality (i.e. water temperature, salinity, organic pollution and nutrients) contributes to an increase in percentage of world’s population currently suffering from severe water scarcity from an annual average of 30% (22%–35% monthly range; water quantity only) to 40% (31%–46%; both water quantity and quality). Water quality impacts are in particular high in severe water scarcity regions, such as in eastern China and India. In these regions, excessive sectoral water withdrawals do not only contribute to water scarcity from a water quantity perspective, but polluted return flows degrade water quality, exacerbating water scarcity. We show that expanding desalination (from 2.9 to 13.6 billion m3 month−1) and treated wastewater uses (from 1.6 to 4.0 billion m3 month−1) can strongly reduce water scarcity levels and the number of people affected, especially in Asia, although the side effects (e.g. brine, energy demand, economic costs) must be considered. The presented results have potential for follow-up integrated analyses accounting for technical and economic constraints of expanding desalination and treated wastewater reuse across the world
    • …
    corecore