17 research outputs found
Longitudinal Relationships between Asthma-Specific Quality of Life and Asthma Control in Children; The Influence of Chronic Rhinitis
Managing pediatric asthma includes optimizing both asthma control and asthma-specific quality of life (QoL). However, it is unclear to what extent asthma-specific QoL is related to asthma control or other clinical characteristics over time. The aims of this study were to assess in children longitudinally: (1) the association between asthma control and asthma-specific QoL and (2) the relationship between clinical characteristics and asthma-specific QoL. In a 12-month prospective study, asthma-specific QoL, asthma control, dynamic lung function indices, fractional exhaled nitric oxide, the occurrence of exacerbations, and the use of rescue medication were assessed every 2 months. Associations between the clinical characteristics and asthma-specific QoL were analyzed using linear mixed models. At baseline, the QoL symptom score was worse in children with asthma and concomitant chronic rhinitis compared to asthmatic children without chronic rhinitis. An improvement of asthma control was longitudinally associated with an increase in asthma-specific QoL (p-value < 0.01). An increased use of β2-agonists, the occurrence of wheezing episodes in the year before the study, the occurrence of an asthma exacerbation in the 2 months prior to a clinical visit, and a deterioration of lung function correlated significantly with a decrease in the Pediatric Asthma Quality of Life Questionnaire (PAQLQ) total score (p-values ≤ 0.01). Chronic rhinitis did not correlate with changes in the PAQLQ score over 1 year. The conclusion was that asthma control and asthma-specific QoL were longitudinally associated, but were not mutually interchangeable. The presence of chronic rhinitis at baseline did influence QoL symptom scores. β2-agonist use and exacerbations before and during the study were inversely related to the asthma-specific QoL over time
Association between exhaled inflammatory markers and asthma control in children
Item does not contain fulltextThe relationship between exhaled inflammatory markers and asthma control in children is unclear. To explore the association between inflammatory markers in exhaled breath (fractional nitric oxide (FeNO), volatile organic compounds (VOCs), cytokines/chemokines) and asthma control. To assess whether exhaled inflammatory markers are able to discriminate between children with persistently controlled/uncontrolled asthma. 96 asthmatic children were followed-up in a one-year observational study. Every 2 months, the following parameters were assessed: asthma control, FeNO, lung function (forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC), exhaled VOCs, and cytokines/chemokines in exhaled breath condensate (EBC). Random Forest was used to analyse the relationship between exhaled inflammatory markers and asthma control. For each model, patients were randomly selected for a training set and validation set. To assess the accuracy of the classification models, receiver operating characteristic-curves (ROC-curves) were generated. No significant association was found between the exhaled inflammatory markers (FeNO, markers in EBC, VOCs) and asthma control (area under the ROC-curve 49%). However, 15 exhaled VOCs could discriminate between subgroups of children with persistently controlled and uncontrolled asthma during all clinical visits (area under the ROC-curve 86%). Adding FeNO and markers in EBC to this model, did not lead to a more accurate classification (area under the ROC-curve 87%). There was no association between exhaled inflammatory markers and asthma control in children. However, children with persistently controlled or uncontrolled asthma during the 12 month study period could be discriminated by a set of VOCs
Can exhaled volatile organic compounds predict asthma exacerbations in children?
Background. Asthma control does not yet meet the goals of asthma management guidelines. Noninvasive monitoring of airway inflammation may help to improve the level of asthma control in children. Objectives. (1) To identify a set of exhaled volatile organic compounds (VOCs) that is most predictive for an asthma exacerbation in children. (2) To elucidate the chemical identity of predictive biomarkers. Methods. In a one-year prospective observational study, 96 asthmatic children participated. During clinical visits at 2 month intervals, asthma control, fractional exhaled nitric oxide, lung function (FEV1, FEV1/VC) and VOCs in exhaled breath were determined by means of gas chromatography time-of-flight mass spectrometry. Random Forrest classification modeling was used to select predictive VOCs, followed by plotting of receiver operating characteristic-curves (ROCcurves). Results. An inverse relationship was found between the predictive power of a set of VOCs and the time between sampling of exhaled breath and the onset of exacerbation. The sensitivity and specificity of the model predicting exacerbations 14 days after sampling were 88% and 75%, respectively. The area under the ROC-curve was 90%. The sensitivity for prediction of asthma exacerbations within 21 days after sampling was 63%. In total, 7 VOCs were selected for the classification model: 3 aldehydes, 1 hydrocarbon, 1 ketone, 1 aromatic compound, and 1 unidentified VOC. Conclusion. VOCs in exhaled breath showed potential for predicting asthma exacerbations in children within 14 days after sampling. Before using this in clinical practice, the validity of predicting asthma exacerbations should be studied in a larger cohort.</p
Longitudinal Relationships between Asthma-Specific Quality of Life and Asthma Control in Children; The Influence of Chronic Rhinitis
Abstract: Managing pediatric asthma includes optimizing both asthma control and asthma-specific quality of life (QoL). However, it is unclear to what extent asthma-specific QoL is related to asthma control or other clinical characteristics over time. The aims of this study were to assess in children longitudinally: (1) the association between asthma control and asthma-specific QoL and (2) the relationship between clinical characteristics and asthma-specific QoL. In a 12-month prospective study, asthma-specific QoL, asthma control, dynamic lung function indices, fractional exhaled nitric oxide, the occurrence of exacerbations, and the use of rescue medication were assessed every 2 months. Associations between the clinical characteristics and asthma-specific QoL were analyzed using linear mixed models. At baseline, the QoL symptom score was worse in children with asthma and concomitant chronic rhinitis compared to asthmatic children without chronic rhinitis. An improvement of asthma control was longitudinally associated with an increase in asthma-specific QoL (p-value < 0.01). An increased use of β2-agonists, the occurrence of wheezing episodes in the year before the study, the occurrence of an asthma exacerbation in the 2 months prior to a clinical visit, and a deterioration of lung function correlated significantly with a decrease in the Pediatric Asthma Quality of Life Questionnaire (PAQLQ) total score (p-values ≤ 0.01). Chronic rhinitis did not correlate with changes in the PAQLQ score over 1 year. The conclusion was that asthma control and asthma-specific QoL were longitudinally associated, but were not mutually interchangeable. The presence of chronic rhinitis at baseline did influence QoL symptom scores. β2-agonist use and exacerbations before and during the study were inversely related to the asthma-specific QoL over time
Early detection of pulmonary exacerbations in children with Cystic Fibrosis by electronic home monitoring of symptoms and lung function
Pulmonary exacerbations (PEx) in Cystic Fibrosis (CF) are associated with an increased morbidity and even mortality. We investigated whether early detection of PEx in children with CF is possible by electronic home monitoring of symptoms and lung function. During this one-year prospective multi-centre study, 49 children with CF were asked to use a home monitor three times a week. Measurements consisted of a respiratory symptom questionnaire and assessment of Forced Expiratory Volume in one second (FEV1). Linear mixed-effects and multiple logistic regression analyses were used. In the 2 weeks before a PEx, the Respiratory Symptom Score (RSS) of the home monitor increased (p = 0.051). The FEV1 as percentage of predicted (FEV1%pred) did not deteriorate in the 4 weeks before a PEx. Nevertheless, the FEV1%pred at the start of exacerbation was significantly lower than the FEV1%pred in the non-exacerbation group (mean difference 16.3%, p = 0.012). The combination of FEV1%pred and RSS had a sensitivity to predict an exacerbation of 92.9% (CI 75.0-98.8%) and a specificity of 88.9% (CI 50.7-99.4%). The combination of home monitor FEV1%pred and RSS can be helpful to predict a PEx in children with CF at an early stage
Publisher Correction : Early detection of pulmonary exacerbations in children with Cystic Fibrosis by electronic home monitoring of symptoms and lung function
A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper
Early detection of pulmonary exacerbations in children with Cystic Fibrosis by electronic home monitoring of symptoms and lung function
Pulmonary exacerbations (PEx) in Cystic Fibrosis (CF) are associated with an increased morbidity and even mortality. We investigated whether early detection of PEx in children with CF is possible by electronic home monitoring of symptoms and lung function. During this one-year prospective multi-centre study, 49 children with CF were asked to use a home monitor three times a week. Measurements consisted of a respiratory symptom questionnaire and assessment of Forced Expiratory Volume in one second (FEV1). Linear mixed-effects and multiple logistic regression analyses were used. In the 2 weeks before a PEx, the Respiratory Symptom Score (RSS) of the home monitor increased (p = 0.051). The FEV1 as percentage of predicted (FEV1%pred) did not deteriorate in the 4 weeks before a PEx. Nevertheless, the FEV1%pred at the start of exacerbation was significantly lower than the FEV1%pred in the non-exacerbation group (mean difference 16.3%, p = 0.012). The combination of FEV1%pred and RSS had a sensitivity to predict an exacerbation of 92.9% (CI 75.0-98.8%) and a specificity of 88.9% (CI 50.7-99.4%). The combination of home monitor FEV1%pred and RSS can be helpful to predict a PEx in children with CF at an early stage
Publisher Correction : Early detection of pulmonary exacerbations in children with Cystic Fibrosis by electronic home monitoring of symptoms and lung function
A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper
KNN- prediction of asthma exacerbation based on acidity of EBC, inflammatory markers in EBC, FeNO, and asthma clinical characteristics.<sup>*</sup>
<p>* KNN algorithm is performed as statistical technique.</p><p>KNN- prediction of asthma exacerbation based on acidity of EBC, inflammatory markers in EBC, FeNO, and asthma clinical characteristics.<sup><a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0119434#t005fn001" target="_blank">*</a></sup></p