192 research outputs found

    Rostering from staffing levels: a branch-and-price approach

    Get PDF
    Many rostering methods first create shifts from some given staffing levels, and after that create rosters from the set of created shifts. Although such a method has some nice properties, it also has some bad ones. In this paper we outline a method that creates rosters directly from staffing levels. We use a Branch-and-Price (B\&P) method to solve this rostering problem and compare it to an ILP formulation of the subclass of rostering problems studied in this paper. The two methods perform almost equally well. Branch-and-Price, though, turns out to be a far more flexible approach to solve rostering problems. It is not too hard to extend the Branch-and-Price model with extra rostering constraints. However, for ILP this is much harder, if not impossible. Next to this, the Branch-and-Price method is more open to improvements and hence, combined with the larger flexibility, we consider it better suited to create rosters directly from staffing levels in practice

    Shift rostering using decomposition: assign weekend shifts first

    Get PDF
    This paper introduces a shift rostering problem that surprisingly has not been studied in literature: the weekend shift rostering problem. It is motivated by our experience that employeesā€™ shift preferences predominantly focus on the weekends, since many social activities happen during weekends. The Weekend Rostering Problem (WRP) addresses the rostering of weekend shifts, for which we design a problem specific heuristic. We consider the WRP as the first phase of the shift rostering problem. To complete the shift roster, the second phase assigns the weekday shifts using an existing algorithm. We discuss effects of this two-phase approach both on the weekend shift roster and on the roster as a whole. We demonstrate that our first-phase heuristic is effective both on generated instances and real-life instances. For situations where the weekend shift roster is one of the key determinants of the quality of the complete roster, our two-phase approach shows to be effective when incorporated in a commercially implemented algorithm

    Variability in neuromotor control of the musculoskeletal system dynamics - A stochastic modelling approach

    Get PDF
    Pain, injuries or diseases might affect how we (are able to) coordinate movement. Therefore, an in-depth understanding of motor control, human movement dynamics and how pathologies affect movement coordination is essential to inform clinical practice that aims to improve the quality of movement in patients and therewith their quality of life. Musculoskeletal models allow for efficient simulations of human movement dynamics to predict the forces in muscles and joints in a non-invasive manner. However, assumptions on motor control are required to solve Bernsteinā€™s problem of muscle redundancy: the large number of muscles relative to the number of joints requires the controller, our central nervous system, to choose how each muscle contributes to the forces that result in the intended movement. For healthy people, it seems reasonable to assume that we control our muscles following an optimality principle: to minimize the amount of metabolic energy spent on the task. However, a disease, pain or instability are likely to influence a patientā€™s control strategy; muscle control might be less optimal and more, or less, variable, depending on a personā€™s ability or need to control force production. Therefore, the general aim of this thesis was to explore the variability in motor control of the musculoskeletal dynamics during walking through a stochastic modelling approach. Firstly, I discussed the theoretical framework to model human movement dynamics and the current efforts to verify and validate musculoskeletal models, with the aim to quantify the errors in their predictions. Secondly, I aimed to explore the influence of motor control on the mechanical load experienced by the joints of the lower limb during level walking. An optimization approach to motor control showed that alternative motor control strategies have the potential to reduce the loading in the knee and the hip, but not in the ankle, during level walking. These results suggest that neuromuscular rehabilitation can be targeted as a conservative treatment when the mechanical load on joints is a determinant of the onset and/or progression of a disease. However, these alternative motor control strategies come at a cost of a moderate increase in the loading at non-targeted joints. Subsequently, the assumption of a lightly sub-optimal motor control strategy to predict knee contact forces, through a stochastic approach to model motor control, captured the measured intra-subject variability in these forces during multiple gait cycles of a patient with a knee replacement. Therefore, the assumption of sub-optimal control can predict a range of plausible joint contact forces, representative of the uncertainty in terms of measurement inaccuracies, modelling errors and inherent variability, which is likely to contain the true force. However, if a higher accuracy of predicted muscle and joint contact forces is required or in case of severely sub-optimal motor control, I believe the only solution is to include an explicit model of motor control. A refined mechanistic model would allow for the differentiation between hierarchical levels of motor control, as proposed by Bernstein, such as the involuntary spinal control and the cognition-driven anticipatory control

    Cost-efficient staffing under annualized hours

    Get PDF
    We study how flexibility in workforce capacity can be used to efficiently match capacity and demand. Flexibility in workforce capacity is introduced by the annualized hours regime. Annualized hours allow organizations to measure working time per year, instead of per month or per week. An additional source of flexibility is hiring employees with different contract types, like full-time, part-time, and min-max, and by hiring subcontractors. We propose a mathematical programming formulation that incorporates annualized hours and shows to be very flexible with regard to modeling various contract types. The objective of our model is to minimize salary cost, thereby covering workforce demand, and using annualized hours. Our model is able to address various business questions regarding tactical workforce planning problems, e.g., with regard to annualized hours, subcontracting, and vacation planning. In a case study for a Dutch hospital two of these business questions are addressed, and we demonstrate that applying annualized hours potentially saves up to 5.2% in personnel wages annually

    Classification of Quantitative Light-Induced Fluorescence Images Using Convolutional Neural Network

    Full text link
    Images are an important data source for diagnosis and treatment of oral diseases. The manual classification of images may lead to misdiagnosis or mistreatment due to subjective errors. In this paper an image classification model based on Convolutional Neural Network is applied to Quantitative Light-induced Fluorescence images. The deep neural network outperforms other state of the art shallow classification models in predicting labels derived from three different dental plaque assessment scores. The model directly benefits from multi-channel representation of the images resulting in improved performance when, besides the Red colour channel, additional Green and Blue colour channels are used.Comment: Full version of ICANN 2017 submissio

    The role of arginine 47 in the cyclization and coupling reactions of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 - Implications for product inhibition and product specificity

    Get PDF
    Cyclodextrin glycosyltransferase (CGTase) (EC 2.4.1.19) is used for the industrial production of cyclodextrins. Its application, however, is hampered by the limited cyclodextrin product specificity and the strong inhibitory effect of cyclodextrins on CGTase activity. Recent structural studies have identified Arg47 in the Bacillus circulans strain 251 CGTase as an active-site residue interacting with cyclodextrins, but not with linear oligosaccharides. Arg47 thus may specifically affect CGTase reactions with cyclic substrates or products. Here we show that mutations in Arg47 (to Leu or Gln) indeed have a negative effect on the cyclization and coupling activities; Arg47 specifically stabilizes the oligosaccharide chain in the transition state for these reactions. As a result, the mutant proteins display a shift in product specificity towards formation of larger cyclodextrins. As expected, both mutants also showed lower affinities for cyclodextrins in the coupling reaction, and a reduced competitive (product) inhibition of the disproportionation reaction by cyclodextrins. Both mutants also provide valuable information about the processes taking place during cyclodextrin production assays. Mutant Arg47-->Leu displayed an increased hydrolyzing activity, causing accumulation of increasing amounts of short oligosaccharides in the reaction mixture, which resulted in lower final amounts of cyclodextrins produced from starch. Interestingly, mutant Arg47-->Gln displayed an increased ratio of cyclization/coupling and a decreased hydrolyzing activity. Due to the decreased coupling activity, which especially affects the production of larger cyclodextrins, this CGTase variant produced the various cyclodextrins in a stable ratio in time. This feature is very promising for the industrial application of CGTase enzymes with improved product specificity

    Myoclonus-Ataxia Syndromes:A Diagnostic Approach

    Get PDF
    Item does not contain fulltextBACKGROUND: A myriad of disorders combine myoclonus and ataxia. Most causes are genetic and an increasing number of genes are being associated with myoclonus-ataxia syndromes (MAS), due to recent advances in genetic techniques. A proper etiologic diagnosis of MAS is clinically relevant, given the consequences for genetic counseling, treatment, and prognosis. OBJECTIVES: To review the causes of MAS and to propose a diagnostic algorithm. METHODS: A comprehensive and structured literature search following PRISMA criteria was conducted to identify those disorders that may combine myoclonus with ataxia. RESULTS: A total of 135 causes of combined myoclonus and ataxia were identified, of which 30 were charted as the main causes of MAS. These include four acquired entities: opsoclonus-myoclonus-ataxia syndrome, celiac disease, multiple system atrophy, and sporadic prion diseases. The distinction between progressive myoclonus epilepsy and progressive myoclonus ataxia poses one of the main diagnostic dilemmas. CONCLUSIONS: Diagnostic algorithms for pediatric and adult patients, based on clinical manifestations including epilepsy, are proposed to guide the differential diagnosis and corresponding work-up of the most important and frequent causes of MAS. A list of genes associated with MAS to guide genetic testing strategies is provided. Priority should be given to diagnose or exclude acquired or treatable disorders

    Real-time detection of viable microorganisms by intracellular phototautomerism

    Get PDF
    BACKGROUND: To date, the detection of live microorganisms present in the environment or involved in infections is carried out by enumeration of colony forming units on agar plates, which is time consuming, laborious and limited to readily cultivable microorganisms. Although cultivation-independent methods are available, they involve multiple incubation steps and do mostly not discriminate between dead or live microorganisms. We present a novel generic method that is able to specifically monitor living microorganisms in a real-time manner. RESULTS: The developed method includes exposure of cells to a weak acid probe at low pH. The neutral probe rapidly permeates the membrane and enters the cytosol. In dead cells no signal is obtained, as the cytosolic pH reflects that of the acidic extracellular environment. In live cells with a neutral internal pH, the probe dissociates into a fluorescent phototautomeric anion. After reaching peak fluorescence, the population of live cells decays. This decay can be followed real-time as cell death coincides with intracellular acidification and return of the probe to its uncharged non-fluorescent state. The rise and decay of the fluorescence signal depends on the probe structure and appears discriminative for bacteria, fungi, and spores. We identified 13 unique probes, which can be applied in the real-time viability method described here. Under the experimental conditions used in a microplate reader, the reported method shows a detection limit of 10(6) bacteria ml(-1), while the frequently used LIVE/DEAD BacLight Syto9 and propidium iodide stains show detection down to 10(6) and 10(7) bacteria ml(-1), respectively. CONCLUSIONS: We present a novel fluorescence-based method for viability assessment, which is applicable to all bacteria and eukaryotic cell types tested so far. The RTV method will have a significant impact in many areas of applied microbiology including research on biocidal activity, improvement of preservation strategies and membrane permeation and stability. The assay allows for high-throughput applications and has great potential for rapid monitoring of microbial content in air, liquids or on surfaces

    Routine versus on demand removal of the syndesmotic screw; A protocol for an international randomised controlled trial (RODEO-trial)

    Get PDF
    Background: Syndesmotic injuries are common and their incidence is rising. In case of surgical fixation of the syndesmosis a metal syndesmotic screw is used most often. It is however unclear whether this screw needs to be removed routinely after the syndesmosis has healed. Traditionally the screw is removed after six to 12 weeks as it is thought to hamper ankle functional and to be a source of pain. Some studies however suggest this is only the case in a minority of patients. We therefore aim to investigate the effect of retaining the syndesmotic screw on functional outcome. Design: This is a pragmatic international multicentre randomised controlled trial in patients with an acute syndesmotic injury for which a metallic syndesmotic screw was placed. Patients will be randomised to either routine removal of the syndesmotic screw or removal on demand. Primary outcome is functional recovery at 12 months measured with the Olerud-Molander Score. Secondary outcomes are quality of life, pain and costs. In total 194 patients will be needed to demonstrate non-inferiority between the two interventions at 80% power and a significance level of 0.025 including 15% loss to follow-up. Discussion: If removal on demand of the syndesmotic screw is non-inferior to routine removal in terms of functional outcome, this will offer a strong argument to adopt this as standard practice of care. This means that patients will not have to undergo a secondary procedure, leading to less complications and subsequent lower costs. Trial registration: This study was registered at the Netherlands Trial Register (NTR5965), Clinicaltrials.gov (NCT02896998) on July 15th 2016
    • ā€¦
    corecore