18 research outputs found

    Follow-up, treatment, and reinfection rates among asymptomatic Chlamydia trachomatis cases in general practice

    Get PDF
    BACKGROUND: Adequate treatment and follow-up of patients is essential to the success of a screening programme for Chlamydia trachomatis. There has been a lack of data on follow-up, confirmation of infections, and reinfection rates among asymptomatic patients in general practice. AIM: 7b study the rates of diagnostic confirmation of C trachomatis infection, successful treatment, and reinfection one year after cases were detected in a screening programme for asymptomatic infections. DESIGN OF STUDY: Prospective cohort study SETTING: Fifteen general practices in Amsterdam, The Netherlands. METHOD: One hundred and twenty-four patients with asymptomatic C trachomatis infections were requested to provide a cervical or urethral swab and a urine specimen, for the purpose of diagnostic confirmation before being treated. One year after the first screening, all of the patients were invited for a second screening. All samples were tested using the ligase chain reaction (Abbott Laboratories, Chicago, USA). RESULTS: Out of 124 patients, 110 (89%) attended the scheduled appointment for diagnostic confirmation and treatment; 92 (84%) of them were confirmed to be positive and received treatment. At the second screening a year later, none of the 56 patients who had received treatment and who had been screened a second time were reinfected. CONCLUSION: No asymptomatic patients werefound to have reinfections with C trachomatis one year after diagnostic confirmation and treatment. This underlines the effectiveness of the screening and treatment strateg

    Ethnic differences in metabolite signatures and type 2 diabetes: a nested case-control analysis among people of South Asian, African and European origin

    Get PDF
    Accumulation of metabolites may mark or contribute to the development of type 2 diabetes mellitus (T2D), but there is a lack of data from ethnic groups at high risk. We examined sphingolipids, acylcarnitines and amino acids, and their association with T2D in a nested case-control study among 54 South Asian Surinamese, 54 African Surinamese and 44 Dutch in the Netherlands. Plasma metabolites were determined at baseline (2001-2003), and cumulative prevalence and incidence of T2D at follow-up (2011-2012). Weighted linear and logistic regression analyses were used to study associations. The mean level of most sphingolipids was lower, and amino-acid levels higher, in the Surinamese groups than among the Dutch. Surinamese individuals had higher mono- and polyunsaturated acylcarnitines and lower plasma levels of saturated acylcarnitine species than the Dutch. Several sphingolipids and amino acids were associated with T2D. Although only the shorter acylcarnitines seemed associated with prevalent T2D, we found an association of all acylcarnitines (except C0, C18 and C18:2) with incident T2D. Further analyses suggested a potentially different association of several metabolites across ethnic groups. Extension and confirmation of these findings may improve the understanding of ethnic differences and contribute to early detection of increased individual risk.Medical Biochemistr

    Performance of risk assessment models for prevalent or undiagnosed type 2 diabetes mellitus in a multi-ethnic population: the Helius study

    Get PDF
    Background: Most risk assessment models for type 2 diabetes (T2DM) have been developed in Caucasians and Asians; little is known about their performance in other ethnic groups.Objective(s): We aimed to identify existing models for the risk of prevalent or undiagnosed T2DM and externally validate them in a multi-ethnic population currently living in the Netherlands.Methods: A literature search to identify risk assessment models for prevalent or undiagnosed T2DM was performed in PubMed until December 2017. We validated these models in 4,547 Dutch, 3,035 South Asian Surinamese, 4,119 African Surinamese, 2,326 Ghanaian, 3,598 Turkish, and 3,894 Moroccan origin participants from the HELIUS (Healthy LIfe in an Urban Setting) cohort study performed in Amsterdam. Model performance was assessed in terms of discrimination (C-statistic) and calibration (Hosmer-Lemeshow test). We identified 25 studies containing 29 models for prevalent or undiagnosed T2DM. C-statistics varied between 0.77-0.92 in Dutch, 0.66-0.83 in South Asian Surinamese, 0.70-0.82 in African Surinamese, 0.61-0.81 in Ghanaian, 0.69-0.86 in Turkish, and 0.69-0.87 in the Moroccan populations. The C-statistics were generally lower among the South Asian Surinamese, African Surinamese, and Ghanaian populations and highest among the Dutch. Calibration was poor (Hosmer-Lemeshow p < 0.05) for all models except one.Conclusions: Generally, risk models for prevalent or undiagnosed T2DM show moderate to good discriminatory ability in different ethnic populations living in the Netherlands, but poor calibration. Therefore, these models should be recalibrated before use in clinical practice and should be adapted to the situation of the population they are intended to be used in.Therapeutic cell differentiatio

    Repositioning of the global epicentre of non-optimal cholesterol

    Get PDF
    High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol—which is a marker of cardiovascular risk—changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million–4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world.</p

    Repositioning of the global epicentre of non-optimal cholesterol

    Get PDF
    High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol�which is a marker of cardiovascular risk�changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95 credible interval 3.7 million�4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world. © 2020, The Author(s), under exclusive licence to Springer Nature Limited

    Rising rural body-mass index is the main driver of the global obesity epidemic in adults

    Get PDF
    Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities 1,2 . This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity 3�6 . Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55 of the global rise in mean BMI from 1985 to 2017�and more than 80 in some low- and middle-income regions�was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing�and in some countries reversal�of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories. © 2019, The Author(s)
    corecore