466 research outputs found

    Assessing the usefulness of acute physiological responses following resistance exercise: sensitivity, magnitude of change and time course of measures

    Get PDF
    A variety of strategies exist to modulate acute physiological responses following resistance exercise aimed at enhancing recovery and/or adaptation processes. To assess the true impact of these strategies, it is important to know the ability of measures to detect meaningful change. We investigated the sensitivity of measures used to quantify acute physiological responses to resistance exercise and constructed a physiological profile to characterise the magnitude of change and time course of this response. Eight males, accustomed to regular resistance exercise, performed experimental sessions during a ‘control week’, void of an exercise stimulus. Participants repeated this sequence of experimental sessions the following week, termed the ‘exercise week’, except they performed a bout of lower-limb resistance exercise following baseline assessments. Assessments were conducted at baseline, 2, 6, 24, 48, 72 and 96 h post-intervention. Based on the signal-to-noise ratio, the most sensitive measures were maximal voluntary isometric contraction, 20m sprint, countermovement jump peak force, rate of force development (100-200ms), muscle soreness, daily analysis of life demands for athletes Part B, limb girth, matrix metalloproteinase-9, interleukin-6, creatine kinase and high sensitivity C-reactive protein with ratios of >1.5. There were clear changes in these measures following resistance exercise, determined via magnitude-based inferences. These findings highlight measures that can detect real changes in acute physiological responses following resistance exercise in trained individuals. Researchers investigating strategies to manipulate acute physiological responses for recovery and/or adaptation can use these measures, as well as recommended sampling points, to be confident that their interventions are making a worthwhile impact

    Effect of hot water immersion on acute physiological responses following resistance exercise

    Get PDF
    Purpose: Hot water immersion (HWI) is a strategy theorised to enhance exercise recovery. However, the acute physiological responses to HWI following resistance exercise are yet to be determined. Methods: The effect of HWI on intramuscular temperature (IMT), muscle function, muscle soreness and blood markers of muscle cell disruption and inflammatory processes after resistance exercise was assessed. Sixteen resistance trained males performed resistance exercise, followed by either 10 min HWI at 40°C or 10 min passive recovery (PAS). Results: Post-intervention, the increase in IMT at all depths was greater for HWI compared to PAS, however this difference had disappeared by 1 h post at depths of 1 and 2 cm, and by 2 h post at a depth of 3 cm. There were no differences between groups for muscle function, muscle soreness or any blood markers. Conclusion: These results suggest that HWI is a viable means of heat therapy to support a greater IMT following resistance exercise. Recovery of muscle function and muscle soreness is independent of acute changes in IMT associated with HWI

    Implications of controlled short-wavelength light exposure for sleep in older adults

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Environmental and physiological conditions make older adults more likely to lose synchronization to their local time and experience sleep disturbances. A regular, 24-hour light/dark cycle promotes synchronization. It is now well established that the circadian system is maximally sensitive to short-wavelength (blue) light. The purpose of the present study was to measure dose effectiveness (amounts and durations) of short-wavelength (blue) light for stimulating the circadian systems of older adults. We investigated the impact of six corneal irradiances (0.7 to 72 μW/cm<sup>2</sup>) of 470-nm light on nocturnal melatonin production. Nine participants, each over 50 years of age completed a within-subjects study. Each week, participants were exposed to one of the six irradiances of 470-nm light for 90 minutes.</p> <p>Findings</p> <p>A two-factor (6 corneal irradiances × 10 exposure durations), within-subjects analysis of variance (ANOVA) was conducted using the melatonin suppression levels. The ANOVA revealed a significant main effect of corneal irradiance (F<sub>5, 30 </sub>= 9.131, p < 0.0001), a significant main effect of exposure duration (F<sub>9, 54 </sub>= 5.731, p < 0.0001), and a significant interaction between these two variables (F<sub>45,270 </sub>= 1.927, p < 0.001). Post hoc t-tests revealed that corneal irradiances as low as 2 μW/cm<sup>2 </sup>reliably suppressed melatonin after 90-minute exposure whereas 0.7 μW/cm<sup>2 </sup>did not.</p> <p>Conclusions</p> <p>Sleep disorders are common and a serious problem for millions of older adults. The present results showed that comfortable, precise and effective doses of light can be prescribed to older adults to reliably stimulate the circadian system that presumably would promote entrainment and, thus, regular sleep. Field studies on the impact of short-wavelength-light doses on sleep efficiency in older adults should be performed.</p

    A Longitudinal Study of Stress During Pregnancy, Children’s Sleep and Polygenic Risk for Poor Sleep in the General Pediatric Population

    Get PDF
    Early life stress is robustly associated with poor sleep across life. Preliminary studies suggest that these associations may begin already in utero. Here, we study the longitudinal associations of prenatal psychosocial stress with sleep across childhood, and assess whether prenatal stress interacts with genetic liability for poor sleep. The study is embedded in the Generation R population-based birth cohort. Caregivers reported on prenatal psychosocial stress (life events, contextual, parental or interpersonal stressors) and on children’s sleep at ages 2 months, 1.5, 2, 3 and 6 years. The study sample consisted of 4,930 children; polygenic risk scores for sleep traits were available in 2,063. Prenatal stress was consistently associated with more sleep problems across assessments. Effect sizes ranged from small (B = 0.21, 95%CI: 0.14;0.27) at 2 months to medium (B = 0.45, 95%CI: 0.38;0.53) at 2 years. Prenatal stress was moreover associated with shorter sleep duration at 2 months (Bhrs = -0.22, 95%CI: -0.32;-0.12) and at 2 years (Bhrs = -0.04, 95%CI -0.07; -0.001), but not at 3 years (Bhrs = 0.02, 95%CI: -0.02;0.06). Prenatal negative life events interacted with polygenic risk for insomnia to exacerbate sleep problems at 6 years (Binteraction = 0.07, 95%CI: 0.02;0.13). Psychosocial stress during pregnancy has negative associations with children’s sleep that persist across childhood, and are exacerbated by genetic liability for insomnia. Associations with sleep duration were more pronounced in infancy and seem to attenuate with age. These findings highlight the role of the prenatal environment for developing sleep regulation, and could inform early intervention programs targeting sleep in children from high-risk pregnancies.</p

    Sleep, vigilance, and thermosensitivity

    Get PDF
    The regulation of sleep and wakefulness is well modeled with two underlying processes: a circadian and a homeostatic one. So far, the parameters and mechanisms of additional sleep-permissive and wake-promoting conditions have been largely overlooked. The present overview focuses on one of these conditions: the effect of skin temperature on the onset and maintenance of sleep, and alertness. Skin temperature is quite well suited to provide the brain with information on sleep-permissive and wake-promoting conditions because it changes with most if not all of them. Skin temperature changes with environmental heat and cold, but also with posture, environmental light, danger, nutritional status, pain, and stress. Its effect on the brain may thus moderate the efficacy by which the clock and homeostat manage to initiate or maintain sleep or wakefulness. The review provides a brief overview of the neuroanatomical pathways and physiological mechanisms by which skin temperature can affect the regulation of sleep and vigilance. In addition, current pitfalls and possibilities of practical applications for sleep enhancement are discussed, including the recent finding of impaired thermal comfort perception in insomniacs

    An Experimental Microarchitecture for a Superconducting Quantum Processor

    Full text link
    Quantum computers promise to solve certain problems that are intractable for classical computers, such as factoring large numbers and simulating quantum systems. To date, research in quantum computer engineering has focused primarily at opposite ends of the required system stack: devising high-level programming languages and compilers to describe and optimize quantum algorithms, and building reliable low-level quantum hardware. Relatively little attention has been given to using the compiler output to fully control the operations on experimental quantum processors. Bridging this gap, we propose and build a prototype of a flexible control microarchitecture supporting quantum-classical mixed code for a superconducting quantum processor. The microarchitecture is based on three core elements: (i) a codeword-based event control scheme, (ii) queue-based precise event timing control, and (iii) a flexible multilevel instruction decoding mechanism for control. We design a set of quantum microinstructions that allows flexible control of quantum operations with precise timing. We demonstrate the microarchitecture and microinstruction set by performing a standard gate-characterization experiment on a transmon qubit.Comment: 13 pages including reference. 9 figure

    Effects of Cycling Intensity on Acute Signaling Adaptations to 8-weeks Concurrent Training in Trained Cyclists

    Get PDF
    © 2022 Jones, Eddens, Kupusarevic, Simoes, Furber, Van Someren and Howatson. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). https://creativecommons.org/licenses/by/4.0/This study examined whether the intensity of endurance stimuli modifies the adaptation in strength and endurance following concurrent training and whether the acute molecular response to concurrent exercise is affected by training status. Using a parallel group design, trained cyclists were randomized to either resistance exercise followed by moderate intensity continuous training (RES + MICT, n = 6), or resistance exercise followed by work matched high intensity interval training (RES + HIIT, n = 7), across an 8 weeks training programme. A single RES + MICT or RES + HIIT exercise stimulus was completed 1 week before and within 5 days of completing the training programme, to assess phosphorylation of protein kinases of the mTOR and AMPK signaling pathways. There were no main effects of time or group on the phosphorylation of protein kinases in response to concurrent exercise stimulus pre- and post-training intervention (p > 0.05). Main effects of time were observed for all maximal strength exercises; back-squat, split-squat, and calf-raise (p 0.05). Whilst preliminary data due to limited sample size the intensity of endurance activity had no effect on performance outcomes, following concurrent training. Further, the acute molecular response to a concurrent exercise stimulus was comparable before and after the training intervention, suggesting that training status had no effect on the molecular responses assessed.Peer reviewedFinal Published versio
    • …
    corecore