40 research outputs found

    Robust Humoral and Cellular Immune Responses to Pertussis in Adults After a First Acellular Booster Vaccination

    Get PDF
    IntroductionTo reduce the pertussis disease burden, nowadays several countries recommend acellular pertussis (aP) booster vaccinations for adults. We aimed to evaluate the immunogenicity of a first adult aP booster vaccination at childbearing age.MethodsIn 2014, healthy adults aged 25–29 years (n = 105), vaccinated during infancy with four doses of whole-cell pertussis (wP) vaccine, received a Tdap (tetanus, diphtheria, and aP) booster vaccination. Blood samples were collected longitudinally pre-booster, 2 and 4 weeks, and 1 year and 2 years post-booster. Tdap vaccine antigen-specific antibody levels and memory B- and T-cell responses were determined at all time points. Antibody persistence was calculated using a bi-exponential decay model.ResultsUpon booster vaccination, the IgG levels specific to all Tdap vaccine antigens were significantly increased. After an initial rapid decline in the first year, PT-IgG antibody decay was limited (15%) in the second year post-booster. The duration of a median level of PT-IgG ≥20 IU/mL was estimated to be approximately 9 years. Vaccine antigen-specific memory B- and T-cell numbers increased and remained at high levels although a significant decline was observed after 4 weeks post-booster. However, Th1, Th2, and Th17 cytokine production remained above pre-booster levels for 2 years.ConclusionThe Tdap booster vaccination in wP-primed Dutch adults induced robust long-term humoral and cellular immune responses to pertussis antigens. Furthermore, PT-IgG levels are predicted to remain above the presumed protective cut-off for at least 9 years which might deserves further attention in evaluating the current recommendation to revaccinate women during every new pregnancy

    Adolescent meningococcal serogroup A, W and Y immune responses following immunization with quadrivalent meningococcal A, C, W and Y conjugate vaccine: Optimal age for vaccination.

    No full text
    Recently the incidence of meningococcal serogroup Y (MenY) and in particular serogroup W (MenW) invasive disease has risen in several European countries, including the Netherlands. Adolescents are a target group for primary prevention through vaccination to protect against disease and reduce carriage and induce herd protection in the population. The present study assessed MenA, MenW and MenY antibody levels in adolescents up to one year following primary vaccination with quadrivalent MenACWY-PS conjugated to tetanus toxoid (MenACWY-TT)

    Use of saliva to monitor meningococcal vaccine responses : proposing a threshold in saliva as surrogate of protection

    No full text
    BACKGROUND: Mucosal antibodies against capsular polysaccharides offer protection against acquisition and carriage of encapsulated bacteria like Neisseria meningitidis serogroup C. Measurements of salivary antibodies as replacement for blood testing has important (cost-effective) advantages, particular in studies that assess the impact of large-scale vaccination or in populations in which blood sampling is difficult. This study aimed to estimate a threshold for meningococcal IgG salivary antibody levels to discriminate between unprotected and protected vaccinated individuals. METHODS: MenA-, MenC-, MenW- and MenY-polysaccharide (PS) specific IgG levels in serum and saliva from participants in a meningococcal vaccination study were measured using the fluorescent-bead-based multiplex immunoassay. Functional antibody titers in serum against the four serogroups were measured with serum bactericidal assay using rabbit complement (rSBA). A threshold for salivary IgG was determined by analysis of ROC curves using a serum rSBA titer ≥128 as correlate of protection. The area under the curve (AUC) was calculated to quantify the accuracy of the salivary test and was considered adequate when ≥0.80. The optimal cut-off was considered adequate when salivary IgG cut-off levels provided specificity of ≥90%. True positive rate (sensitivity), positive predictive value, and negative predictive value were calculated to explore the possible use of salivary antibody levels as a surrogate of protection. RESULTS: The best ROC curve (AUC of 0.95) was obtained for MenC, with an estimated minimum threshold of MenC-PS specific salivary IgG ≥3.54 ng/mL as surrogate of protection. An adequate AUC (> 0.80) was also observed for MenW and MenY with an estimated minimal threshold of 2.00 and 1.82 ng/mL, respectively. When applying these thresholds, all (100%) samples collected 1 month and 1 year after the (booster) meningococcal vaccination, that were defined as protective in the saliva test for MenC, MenW and MenY, corresponded with concomitant serum rSBA titer ≥128 for the respective meningococcal serogroups. CONCLUSION: The saliva test offers an alternative screening tool to monitor protective vaccine responses up to one year after meningococcal vaccination against MenC, MenW and MenY. Future (large) longitudinal vaccination studies evaluating also clinical protection against IMD or carriage acquisition are required to validate the currently proposed threshold in saliva

    Use of saliva to monitor meningococcal vaccine responses: proposing a threshold in saliva as surrogate of protection

    No full text
    Abstract Background Mucosal antibodies against capsular polysaccharides offer protection against acquisition and carriage of encapsulated bacteria like Neisseria meningitidis serogroup C. Measurements of salivary antibodies as replacement for blood testing has important (cost-effective) advantages, particular in studies that assess the impact of large-scale vaccination or in populations in which blood sampling is difficult. This study aimed to estimate a threshold for meningococcal IgG salivary antibody levels to discriminate between unprotected and protected vaccinated individuals. Methods MenA-, MenC-, MenW- and MenY-polysaccharide (PS) specific IgG levels in serum and saliva from participants in a meningococcal vaccination study were measured using the fluorescent-bead-based multiplex immunoassay. Functional antibody titers in serum against the four serogroups were measured with serum bactericidal assay using rabbit complement (rSBA). A threshold for salivary IgG was determined by analysis of ROC curves using a serum rSBA titer ≥128 as correlate of protection. The area under the curve (AUC) was calculated to quantify the accuracy of the salivary test and was considered adequate when ≥0.80. The optimal cut-off was considered adequate when salivary IgG cut-off levels provided specificity of ≥90%. True positive rate (sensitivity), positive predictive value, and negative predictive value were calculated to explore the possible use of salivary antibody levels as a surrogate of protection. Results The best ROC curve (AUC of 0.95) was obtained for MenC, with an estimated minimum threshold of MenC-PS specific salivary IgG ≥3.54 ng/mL as surrogate of protection. An adequate AUC (> 0.80) was also observed for MenW and MenY with an estimated minimal threshold of 2.00 and 1.82 ng/mL, respectively. When applying these thresholds, all (100%) samples collected 1 month and 1 year after the (booster) meningococcal vaccination, that were defined as protective in the saliva test for MenC, MenW and MenY, corresponded with concomitant serum rSBA titer ≥128 for the respective meningococcal serogroups. Conclusion The saliva test offers an alternative screening tool to monitor protective vaccine responses up to one year after meningococcal vaccination against MenC, MenW and MenY. Future (large) longitudinal vaccination studies evaluating also clinical protection against IMD or carriage acquisition are required to validate the currently proposed threshold in saliva

    Induction of salivary antibody levels in Dutch adolescents after immunization with monovalent meningococcal serogroup C or quadrivalent meningococcal serogroup A, C, Wand Y conjugate vaccine

    No full text
    Background Meningococcal infection starts with colonisation of the upper respiratory tract. Mucosal immunity is important for protection against acquisition and subsequent meningococcal carriage. In this study, we assessed salivary antibody levels against meningococcal serogroup A (MenA), W (MenW) and Y (MenY) after vaccination with a quadrivalent MenACWY conjugated vaccine. We also compared salivary meningococcal serogroup C (MenC) antibody levels after monovalent MenC and quadrivalent MenACWY conjugated vaccination. Methods Healthy participants, who had received MenC conjugate vaccine between 14 months and 3 years of age, received a (booster) MenC or MenACWY vaccination at age 10–15 years. MenA-, MenC-, MenW- and MenY-polysaccharide (PS) specific IgG and IgA levels in saliva and serum and PS specific secretory component levels in saliva were measured using the fluorescent-bead-based multiplex immunoassay. Results MenACYW vaccination increased salivary PS-specific IgA (2-fold) and IgG levels(>10-fold) for MenA, MenY, and MenW. After one year, salivary IgA levels had returned to baseline levels. Both vaccines induced an increase in salivary MenC-PS specific IgA (>3-fold) and IgG (>100-fold), with higher levels after MenC as compared to MenACWY vaccination. The antibody decay rate of MenC in saliva between one month and one year was similar for both vaccines. The overall correlation between serum and saliva IgA levels was low (R = 0.39, R = 0.58, R = 0.31, and R = 0.36 for MenA, MenC, MenW and MenY, respectively). Serogroup-PS specific IgG levels between serum and saliva correlated better (R ranged from 0.51 to 0.88). Conclusions Both primary (MenA, MenY, and MenW) and booster (MenC) parenteral meningococcal conjugate vaccination induced high salivary antibody levels. The strong correlation for MenC, MenW and MenY between saliva and serum IgG levels indicates that saliva might be used as a reliable tool to measure vaccine responses after both primary and booster meningococcal vaccination

    Salivary antibody levels in adolescents in response to a meningococcal serogroup C conjugate booster vaccination nine years after priming : systemically induced local immunity and saliva as potential surveillance tool

    No full text
    BACKGROUND: In several countries large-scale immunization of children and young adults with Meningococcal serogroup C (MenC) conjugate vaccines has induced long-standing herd protection. Salivary antibodies may play an important role in mucosal protection against meningococcal acquisition and carriage. AIM: To investigate antibody levels in (pre)adolescents primed 9 years earlier with a single dose of MenC-polysaccharide tetanus toxoid conjugated (MenC-TT) vaccine and the response to a booster vaccination, with special focus on age-related differences and the relation between salivary and serum antibody levels. METHODS: Nine years after priming, healthy 10- (n=91), 12- (n=91) and 15-year-olds (n=86) received a MenC-TT booster vaccination. Saliva and serum samples were collected prior to and 1 month and 1 year after vaccination. MenC-polysaccharide(MenC-PS)-specific antibody levels were measured using a fluorescent-bead-based multiplex immunoassay. RESULTS: Before the booster, MenC-PS-specific IgG and IgA levels in saliva and serum were low and correlated with age at priming. The booster induced a marked increase in salivary MenC-PS-specific IgG (>200-fold), but also in IgA (∼10-fold). One year after the booster, salivary IgG and IgA had remained above pre-booster levels in all age groups (∼20-fold and ∼3-fold, respectively), with persistence of highest levels in the 15-year-olds. MenC-PS-specific IgG and IgA levels in saliva strongly correlated with the levels in serum. CONCLUSION: Parenteral MenC-TT booster vaccination induces a clear increase in salivary MenC-PS-specific IgG and IgA levels and persistence of highest levels correlates with age. The strong correlation between serum and salivary antibody levels indicate that saliva may offer an easy and reliable tool for future antibody surveillance

    The Department of Maori Affairs housing programme, 1935-1967 : a thesis presented in fulfillment of the requirements for the degree of Master of Arts in history at Massey University

    Get PDF
    The Department of Maori Affairs housing programme was established in the 1930s through the Maori Housing Act (1935) and the Maori Housing Amendment Act (1938). A special housing programme was required because a large proportion of the Maori population lived in 'deplorable' housing conditions, and it was'... impossible for the average Maori to finance a new home'1 1. J M McEwen, 'Urbanisation and the Multi-Racial Society', in R H Brookes and I H Kawharu (eds.), Administration in New Zealand's Multi-Racial Society (Wellington, 1967), p. 76. through lending institutions because they could provide neither security nor regular payments. The purposes of this study are twofold. First, to examine successive governments' Maori housing policies in the period 1935 to 1967, and discuss how these were implemented by the Department of Maori Affairs. Second, to assess their effectiveness as a provider of housing for the Maori population

    Meningococcal serogroup C immunogenicity, antibody persistence and memory B-cells induced by the monovalent meningococcal serogroup C versus quadrivalent meningococcal serogroup ACWY conjugate booster vaccine : A randomized controlled trial

    No full text
    BACKGROUND: Adolescents are considered the key transmitters of meningococci in the population. Meningococcal serogroup C (MenC) antibody levels wane rapidly after MenC conjugate vaccination in young children, leaving adolescents with low antibody levels. In this study, we compared MenC immune responses after booster vaccination in adolescence with either tetanus toxoid conjugated MenC (MenC-TT) or MenACWY (MenACWY-TT) vaccine, and aimed to establish an optimal age for this booster. METHODS: Healthy 10-, 12-, and 15-year-olds, who received a single dose of MenC-TT vaccine in early childhood, were randomized to receive MenC-TT or MenACWY-TT vaccine. MenC serum bactericidal antibody (rSBA) titers, MenC polysaccharide (PS) specific IgG, IgG1 and IgG2 and MenC-specific IgG and IgA memory B-cells were determined before, one month and one year after the booster. Non-inferiority was tested by comparing geometric mean titers (GMTs) between vaccinees at one year. RESULTS: Of 501 participants, 464 (92.6%) were included in the 'according to protocol' cohort analysis. At one month, all participants developed high MenC rSBA titers (>24,000 in all groups) and MenC-PS-specific IgG levels. Non-inferiority was not demonstrated one year after the booster with higher MenC GMTs after the monovalent vaccine, but 462/464 (99.6%) participants maintained protective MenC rSBA titers. IgG levels mainly consisted of IgG1, but similar levels of increase were observed for IgG1 and IgG2. Both vaccines induced a clear increase in the number of circulating MenC-PS specific IgG and IgA memory B-cells. Between one month and one year, the highest antibody decay rate was observed in the 10-year-olds. CONCLUSION: Both MenC-TT and MenACWY-TT vaccines induced robust protective MenC immune responses after the booster vaccination, although non-inferiority could not be demonstrated for the MenACWY-TT vaccine after one year. Our results underline the importance of optimal timing of a meningococcal booster vaccination to protect against MenC disease in the long-term

    Different Dynamics for IgG and IgA Memory B Cells in Adolescents following a Meningococcal Serogroup C Tetanus Toxoid Conjugate Booster Vaccination Nine Years after Priming : A Role for Priming Age?

    No full text
    BACKGROUND: Antibody levels wane rapidly after Meningococcal serogroup C conjugate (MenCC) vaccination in young children, rendering the need for an adolescent booster dose. It is not clear whether circulating memory B cells are associated with persistence of MenC-specific antibody levels. METHODS: Measurement of MenC-specific IgG and IgA memory B cells and levels of serum and salivary MenC-specific IgG and IgA in healthy 10-, 12- and 15-year-olds prior to and one month and one year after a MenCC booster vaccination. All participants had received a primary MenCC vaccination nine years earlier. RESULTS: The number of circulating MenC-specific IgG memory B cells prior to booster was low and not predictive for MenC-specific IgG responses in serum or saliva post-booster, whereas the number of MenC-specific IgA memory B cells pre-booster positively correlated with MenC-specific IgA levels in saliva post-booster (R = 0.5, P<0.05). The booster induced a clear increase in the number of MenC-specific IgG and IgA memory B cells. The number of MenC-PS-specific IgG memory B cells at 1 month post-booster was highest in the 12-year-olds. The number of MenC-specific memory B cells at one month post-booster showed no correlation with the rate of MenC-specific antibody decay throughout the first year post-booster. CONCLUSIONS: Circulating MenC-specific IgA memory B cells correlate with IgA responses in saliva, whereas circulating MenC-specific IgG memory B cells are not predictive for MenC-specific IgG responses in serum or saliva. Our results are suggestive for age-dependent differences in pre-existing memory against MenC
    corecore