42 research outputs found

    How needs and preferences of employees influence participation in health promotion programs: A six-month follow-up study

    Get PDF
    Background: Low participation in health promotion programs (HPPs) might hamper their effectiveness. A potential reason for low participation is disagreement between needs and preferences of potential participants and the actual HPPs offered. This study aimed to investigate employees' need and preferences for HPPs, whether these are matched by what their employers provide, and whether a higher agreement enhanced participation. Methods: Employees of two organizations participated in a six-month follow-up study (n = 738). At baseline, information was collected on employees' needs and preferences for the topic of the HPP (i.e. physical activity, healthy nutrition, smoking cessation, stress management, general health), whether they favored a HPP via their employer or at their own discretion, and their preferred HPP regarding three components with each two alternatives: mode of delivery (individual vs. group), intensity (single vs. multiple meetings), and content (assignments vs. information). Participation in HPPs was assessed at six-month

    Barriers and facilitators for participation in health promotion programs among employees: A six-month follow-up study

    Get PDF
    Background: Health promotion programs (HPPs) are thought to improve health behavior and health, and their effectiveness is increasingly being studied. However, participation in HPPs is usually modest and effect sizes are often small. This study aims to (1) gain insight into the degree of participation of employees in HPPs, and (2) identify factors among employees that are associated with both their intention to participate and actual participation in HPPs. Methods. Employees of two organizations were invited to participate in a six-month follow-up study (n = 744). Using questionnaires, information on participation in HPPs was collected in two categories: employees' intention at baseline to participate and their actual participation in a HPP during the follow-up period. The following potential determinants were assessed at baseline: social-cognitive factors, perceived barriers and facilitators, beliefs about health at work, health behaviors, and self-perceived health. Logistic regression analyses, adjusted for demographics and organization, were used to examine associations between potential determinants and intention to participate, and to examine the effect of these determinants on actual participation during follow-up. Results: At baseline, 195 employees (26%) expressed a positive intention towards participation in a HPP. During six months of follow-up, 83 employees (11%) actually participated. Participants positively inclined at baseline to participate in a HPP were more likely to actually participate (OR = 3.02, 95% CI: 1.88-4.83). Privacy-related barriers, facilit

    Higher Midazolam Clearance in Obese Adolescents Compared with Morbidly Obese Adults

    Get PDF
    Background The clearance of cytochrome P450 (CYP) 3A substrates is reported to be reduced with lower age, inflammation and obesity. As it is unknown what the overall influence is of these factors in the case of obese adolescents vs. morbidly obese adults, we studied covariates influencing the clearance of the CYP3A substrate midazolam in a combined analysis of data from obese adolescents and morbidly obese adults. Methods Data from 19 obese adolescents [102.7 kg (62–149.5 kg)] and 20 morbidly obese adults [144 kg (112–186 kg)] receiving intravenous midazolam were analysed, using population pharmacokinetic modelling (NONMEM 7.2). In the covariate analysis, the influence of study group, age, total body weight (TBW), developmental weight (WTfor age and length) and excess body weight (WTexcess = TBW − WTfor age and length) was evaluated. Results The population mean midazolam clearance was significantly higher in obese adolescents than in morbidly obese adults [0.71 (7%) vs. 0.44 (11%) L/min; p < 0.01]. Moreover, clearance in obese adolescents increased with TBW (p < 0.01), which seemed mainly explained by WTexcess, and for which a so-called ‘excess weight’ model scaling WTfor age and length to the power of 0.75 and a separate function for WTexcess was proposed. Discussion We hypothesise that higher midazolam clearance in obese adolescents is explained by less obesity-induced suppression of CYP3A activity, while the increase with WTexcess is explained by increased liver blood flow. The approach characterising the influence of obesity in the paediatric population we propose here may be of value for use in future studies in obese adolescents

    Morbidly Obese Patients Exhibit Increased CYP2E1-Mediated Oxidation of Acetaminophen

    Get PDF
    Introduction: Acetaminophen (paracetamol) is mainly metabolized via glucuronidation and sulphation, while the minor pathway through cytochrome P450 (CYP) 2E1 is held responsible for hepatotoxicity. In obese patients, CYP2E1 activity is reported to be induced, thereby potentially worsening the safety profile of acetaminophen. The aim of this study was to determine the pharmacokinetics of acetaminophen and its metabolites (glucuronide, sulphate, cysteine and mercapturate) in morbidly obese and non-obese patients. Methods: Twenty morbidly obese patients (with a median total body weight [TBW] of 140.1 kg [range 106–193.1 kg] and body mass index [BMI] of 45.1 kg/m2 [40–55.2 kg/m2]) and eight non-obese patients (with a TBW of 69.4 kg [53.4–91.7] and BMI of 21.8 kg/m2 [19.4–27.4]) received 2 g of intravenous acetaminophen. Fifteen blood samples were collected per patient. Population pharmacokinetic modelling was performed using NONMEM. Results: In morbidly obese patients, the median area under the plasma concentration–time curve from 0 to 8 h (AUC0–8h) of acetaminophen was significantly smaller (P = 0.009), while the AUC0–8h ratios of the glucuronide, sulphate and cysteine metabolites to acetaminophen were significantly higher (P = 0.043, 0.004 and 0.010, respectively). In the model, acetaminophen CYP2E1-mediated clearance (cysteine and mercapturate) increased with lean body weight [LBW] (population mean [relative standard error] 0.0185 L/min [15 %], P < 0.01). Moreover, accelerated formation of the cysteine and mercapturate metabolites was found with increasing LBW (P < 0.001). Glucuronidation clearance (0.219 L/min [5 %]) and sulphation clearance (0.0646 L/min [6 %]) also increased with LBW (P < 0.001). Conclusion: Obesity leads to lower acetaminophen concentrations and earlier and higher peak concentrations of acetaminophen cysteine and mercapturate. While a higher dose may be anticipated to achieve adequate acetaminophen concentrations, the increased CYP2E1-mediated pathway may preclude this dose adjustment

    Dutch Pharmacogenetics Working Group (DPWG) guideline for the gene-drug interaction of DPYD and fluoropyrimidines

    Get PDF
    Despite advances in the field of pharmacogenetics (PGx), clinical acceptance has remained limited. The Dutch Pharmacogenetics Working Group (DPWG) aims to facilitate PGx implementation by developing evidence-based pharmacogenetics guidelines to optimize pharmacotherapy. This guideline describes the starting dose optimization of three anti-cancer drugs (fluoropyrimidines: 5-fluorouracil, capecitabine and tegafur) to decrease the risk of severe, potentially fatal, toxicity (such as diarrhoea, hand-foot syndrome, mucositis or myelosuppression). Dihydropyrimidine dehydrogenase (DPD, encoded by the DPYD gene) enzyme deficiency increases risk of fluoropyrimidine-induced toxicity. The DPYD-gene activity score, determined by four DPYD variants, predicts DPD activity and can be used to optimize an individual's starting dose. The gene activity score ranges from 0 (no DPD activity) to 2 (normal DPD activity). In case it is not possible to calculate the gene activity score based on DPYD genotype, we recommend to determine the DPD activity and adjust the initial dose based on available data. For patients initiating 5-fluorouracil or capecitabine: subjects with a gene activity score of 0 are recommended to avoid systemic and cutaneous 5-fluorouracil or capecitabine; subjects with a gene activity score of 1 or 1.5 are recommended to initiate therapy with 50% the standard dose of 5-fluorouracil or capecitabine. For subjects initiating tegafur: subjects with a gene activity score of 0, 1 or 1.5 are recommended to avoid tegafur. Subjects with a gene activity score of 2 (reference) should receive a standard dose. Based on the DPWG clinical implication score, DPYD genotyping is considered "essential", therefore directing DPYD testing prior to initiating fluoropyrimidines

    Dutch pharmacogenetics working group guideline for the gene-drug interaction of ABCG2, HLA-B and Allopurinol, and MTHFR, folic acid and methotrexate

    Get PDF
    The Dutch Pharmacogenetics Working Group (DPWG) aims to facilitate PGx implementation by developing evidence-based pharmacogenetics guidelines to optimize pharmacotherapy. This guideline describes the gene-drug interaction of ABCG2 with allopurinol, HLA-B with allopurinol, MTHFR with folic acid, and MTHFR with methotrexate, relevant for the treatment of gout, cancer, and rheumatoid arthritis. A systematic review was performed based on which pharmacotherapeutic recommendations were developed. Allopurinol is less effective in patients with the ABCG2 p.(Gln141Lys) variant. In HLA-B*58:01 carriers, the risk of severe cutaneous adverse events associated with allopurinol is strongly increased. The DPWG recommends using a higher allopurinol dose in patients with the ABCG2 p.(Gln141Lys) variant. For HLA-B*58:01 positive patients the DPWG recommends choosing an alternative (for instance febuxostat). The DPWG indicates that another option would be to precede treatment with allopurinol tolerance induction. Genotyping of ABCG2 in patients starting on allopurinol was judged to be 'potentially beneficial' for drug effectiveness, meaning genotyping can be considered on an individual patient basis. Genotyping for HLA-B*58:01 in patients starting on allopurinol was judged to be 'beneficial' for drug safety, meaning it is advised to consider genotyping the patient before (or directly after) drug therapy has been initiated. For MTHFR-folic acid there is evidence for a gene-drug interaction, but there is insufficient evidence for a clinical effect that makes therapy adjustment useful. Finally, for MTHFR-methotrexate there is insufficient evidence for a gene-drug interaction

    Dutch Pharmacogenetics Working Group (DPWG) guideline for the gene-drug interaction between CYP2D6, CYP3A4 and CYP1A2 and antipsychotics

    Get PDF
    The Dutch Pharmacogenetics Working Group (DPWG) aims to facilitate pharmacogenetics implementation in clinical practice by developing evidence-based guidelines to optimize pharmacotherapy. A guideline describing the gene-drug interaction between the genes CYP2D6, CYP3A4 and CYP1A2 and antipsychotics is presented here. The DPWG identified gene-drug interactions that require therapy adjustments when respective genotype is known for CYP2D6 with aripiprazole, brexpiprazole, haloperidol, pimozide, risperidone and zuclopenthixol, and for CYP3A4 with quetiapine. Evidence-based dose recommendations were obtained based on a systematic review of published literature. Reduction of the normal dose is recommended for aripiprazole, brexpiprazole, haloperidol, pimozide, risperidone and zuclopenthixol for CYP2D6-predicted PMs, and for pimozide and zuclopenthixol also for CYP2D6 IMs. For CYP2D6 UMs, a dose increase or an alternative drug is recommended for haloperidol and an alternative drug or titration of the dose for risperidone. In addition, in case of no or limited clinical effect, a dose increase is recommended for zuclopenthixol for CYP2D6 UMs. Even though evidence is limited, the DPWG recommends choosing an alternative drug to treat symptoms of depression or a dose reduction for other indications for quetiapine and CYP3A4 PMs. No therapy adjustments are recommended for the other CYP2D6 and CYP3A4 predicted phenotypes. In addition, no action is required for the gene-drug combinations CYP2D6 and clozapine, flupentixol, olanzapine or quetiapine and also not for CYP1A2 and clozapine or olanzapine. For identified gene-drug interactions requiring therapy adjustments, genotyping of CYP2D6 or CYP3A4 prior to treatment should not be considered for all patients, but on an individual patient basis only

    Dutch Pharmacogenetics Working Group (DPWG) guideline for the gene–drug interaction of DPYD and fluoropyrimidines

    Get PDF
    Despite advances in the field of pharmacogenetics (PGx), clinical acceptance has remained limited. The Dutch Pharmacogenetics Working Group (DPWG) aims to facilitate PGx implementation by developing evidence-based pharmacogenetics guidelines to optimize pharmacotherapy. This guideline describes the starting dose optimization of three anti-cancer drugs (fluoropyrimidines: 5-fluorouracil, capecitabine and tegafur) to decrease the risk of severe, potentially fatal, toxicity (such as diarrhoea, hand-foot syndrome, mucositis or myelosuppression). Dihydropyrimidine dehydrogenase (DPD, encoded by the DPYD gene) enzyme deficiency increases risk of fluoropyrimidine-induced toxicity. The DPYD-gene activity score, determined by four DPYD variants, predicts DPD activity and can be used to optimize an individual’s starting dose. The gene activity score ranges from 0 (no DPD activity) to 2 (normal DPD activity). In case it is not possible to calculate the gene activity score based on DPYD genotype, we recommend to determine the DPD activity and adjust the initial dose based on available data. For patients initiating 5-fluorouracil or capecitabine: subjects with a gene activity score of 0 are recommended to avoid systemic and cutaneous 5-fluorouracil or capecitabine; subjects with a gene activity score of 1 or 1.5 are recommended to initiate therap
    corecore