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Abstract
Despite advances in the field of pharmacogenetics (PGx), clinical acceptance has remained limited. The Dutch
Pharmacogenetics Working Group (DPWG) aims to facilitate PGx implementation by developing evidence-based
pharmacogenetics guidelines to optimize pharmacotherapy. This guideline describes the starting dose optimization of three
anti-cancer drugs (fluoropyrimidines: 5-fluorouracil, capecitabine and tegafur) to decrease the risk of severe, potentially fatal,
toxicity (such as diarrhoea, hand-foot syndrome, mucositis or myelosuppression). Dihydropyrimidine dehydrogenase (DPD,
encoded by the DPYD gene) enzyme deficiency increases risk of fluoropyrimidine-induced toxicity. The DPYD-gene activity
score, determined by four DPYD variants, predicts DPD activity and can be used to optimize an individual’s starting dose.
The gene activity score ranges from 0 (no DPD activity) to 2 (normal DPD activity). In case it is not possible to calculate the
gene activity score based on DPYD genotype, we recommend to determine the DPD activity and adjust the initial dose based
on available data. For patients initiating 5-fluorouracil or capecitabine: subjects with a gene activity score of 0 are
recommended to avoid systemic and cutaneous 5-fluorouracil or capecitabine; subjects with a gene activity score of 1 or 1.5
are recommended to initiate therapy with 50% the standard dose of 5-fluorouracil or capecitabine. For subjects initiating
tegafur: subjects with a gene activity score of 0, 1 or 1.5 are recommended to avoid tegafur. Subjects with a gene activity
score of 2 (reference) should receive a standard dose. Based on the DPWG clinical implication score, DPYD genotyping is
considered “essential”, therefore directing DPYD testing prior to initiating fluoropyrimidines.

Introduction

The role of heritable genetic variation on drug response is
referred to as pharmacogenetics (PGx). Germline mutations
in pharmacogenetic loci can predict phenotypic differences

in drug response and can be used to guide dose and drug
selection to achieve safer and more (cost-) effective phar-
macotherapy. PGx guided pharmacotherapy is one of the
first clinical applications of genomics in medicine. Despite
scientific and clinical advances in the field of PGx, clinical
adoption has remained limited. Barriers preventing imple-
mentation have been previously reported [1]. Some of these
barriers have been overcome in the past years. One of these
barriers was the lack of clear guidelines on how to interpret
and apply PGx test results.

The Royal Dutch Pharmacists Association (KNMP)
established the Dutch Pharmacogenetics Working Group
(DPWG) in 2005 to overcome this barrier [2]. The main
objectives of the DPWG are (1) to develop PGx informed
therapeutic recommendations based on systematic literature
review, and (2) to assist physicians and pharmacists by
integrating the recommendations into computerized systems
for drug prescription, dispensing and automated medication
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surveillance. This manuscript thus provides both the content
required for enabling local translation of assay results into
the predicted phenotype (in this case the gene activity score)
and for programming therapeutic recommendations into
local clinical decision support systems. With the objective
of implementing PGx into routine care, the DPWG has
additionally developed the clinical implication score, which
is given to every gene–drug interaction. The aim of this
score is to direct clinicians on whether or not to order
relevant PGx genotyping tests before initiating therapy.
Recently, the DPWG guidelines were endorsed by the
European Association of Clinical Pharmacology and Ther-
apeutics and the European Association of Hospital Phar-
macists [3, 4]. Other initiatives such as the Clinical
Pharmacogenetics Implementation Consortium (CPIC) were
also established to support clinical implementation [5, 6].

The DPWG is a multidisciplinary group in which (clin-
ical) pharmacists, physicians, clinical pharmacologists,
clinical chemists and epidemiologists are represented. From
2005 onwards, the DPWG has systematically executed 90
risk analyses for potential gene–drug interactions resulting
in 49 guidelines providing therapeutic recommendations for
one or more aberrant phenotypes [7]. Available DPWG
guidelines and future updates will be published in an effort
to provide transparency of their development and to fulfil
the public demand for their publication.

This guideline describes the starting dose optimization of
three anti-cancer drugs (fluoropyrimidines: 5-fluorouracil,
capecitabine and tegafur) to decrease the risk of severe,
potentially fatal, toxicity; such as diarrhoea, hand-foot
syndrome, mucositis or myelosuppression. Dihydropyr-
imidine dehydrogenase enzyme (DPD) deficiency (which is
encoded by the DPYD gene) increases the risk of
fluoropyrimidine-induced toxicity. The gene activity score
is currently based on the results of four DPYD variants,
predicts DPD enzyme activity and is used to optimize an
individual’s starting dose. The gene activity score ranges
from 0 (no DPD activity) to 2 (normal DPD activity). This
manuscript provides an overview of the guideline devel-
opment and summarizes the pharmacotherapeutic recom-
mendations. In addition, a comparison to alternative
guidelines is presented. The “gene–drug interaction” section
includes background on the pharmacological mechanism of
the interaction. In addition it also includes a list of the
DPYD variants associated with toxicity and the method
developed by DPWG for local translation of assay results
into the gene activity score. This information may be useful
for laboratories to select and design a DPYD genotyping
assay and subsequently determine the patients’ predicted
phenotype based on the genotype results. Consequently,
the literature review supporting the DPYD-fluoropyrimidine
interaction is described and the DPWG guideline is pre-
sented. A summary of all references identified by the

systematic review that were subsequently used to develop
this guideline, can be found in Supplementary Tables 1
and 2. The recommendations provided in this manuscript
can be used in combination with a patients’ predicted
phenotype to optimize starting dose of fluoropyrimidines,
thereby decreasing the risk of severe and potentially fatal
toxicity.

Drugs: fluoropyrimidines (5-fluorouracil,
capecitabine and tegafur with DPD-inhibitors)

Fluoropyrimidines are antimetabolite drugs widely used in
the treatment of colorectal, breast, stomach and skin cancer.
Each year, over two million patients worldwide receive
treatment with fluoropyrimidines. This includes 5-FU and
its oral pro-drugs capecitabine and tegafur. Up to 30% of
patients experience severe toxicity (Common Terminology
Criteria for Adverse Events, CTCAE, Grade ≥3), including
diarrhoea, hand-foot syndrome, mucositis and myelosup-
pression. For ~1% of patients toxicity is fatal [8, 9]. Toxi-
city may occur within the first treatment cycle (early onset),
supporting the importance of optimizing the starting dose of
fluoropyrimidine pharmacotherapy on a personalized basis,
before initiating therapy [10].

Capecitabine is metabolised into 5-FU in three con-
secutive steps. Capecitabine is firstly metabolised to 5′-
deoxy-5-fluorocytidine (5′-DFCR) by carboxylesterase,
subsequently, 5′-DFCR is converted into 5′-deoxy-5-fluor-
ouridine (5′-DFUR) by cytidine deaminase, and to 5-FU by
thymidine phosphorylase. 5-FU is metabolised in tissues to
5-fluoro-2′-deoxyuridine and then to 5-fluoro-2′-deoxyur-
idine-5′-monophosphate, the active metabolite of the drug.
The active metabolite inhibits the enzyme thymidylate
synthase, resulting in inhibition of DNA synthesis and
repair, inducing cell apoptosis and thus, its effect. In addi-
tion, toxic effects resulting from partial incorporation of 5-
FU and its metabolites in DNA and RNA contribute to the
drug’s mechanism of action [11].

Tegafur is metabolised into 5-FU and into the less
cytotoxic metabolites 3-hydroxytegafur, 4-hydroxytegafur
and dihydrotegafur by CYP2A6. The less toxic metabolites
are renally cleared. Tegafur was combined with the DPD
inhibitor uracil and is now combined with the DPD inhibitor
gimeracil and the orotate phoshoribosyltransferase inhibitor
oteracil. Oteracil diminishes the activity of 5-FU in normal
gastrointestinal mucosa. The DPD inhibitors diminish the
formation of functionally inactive metabolites of 5-FU that
contribute to adverse events like stomatitis and mucositis.
Both uracil and gimeracil inhibit DPD activity reversibly
and have a shorter elimination half-life and thus shorter
period of action than tegafur. For this reason, genetic var-
iants influencing DPD enzyme activity are clinically rele-
vant for tegafur in combination with DPD inhibitors.
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Gene: dihydropyrimidine dehydrogenase (DPYD)

The DPYD gene encodes the enzyme DPD. DPYD is
located on chromosome 1p21.3, and transcription variant 1
(NM_000110.3) has 26 exons, spanning ~900 kb [12]. Over
160 different allele variants in DPYD have been identified
and described in literature [13]. According to the gnomAD
browser [14], which contains whole exome data of almost
140,000 individuals, DPYD contains 2190 known variants.
The prevalence of individual variants is low. The effect of
genetic variation on DPD enzyme activity is not fully
established for the majority of variants and the size of the
effect can differ between variants.

The frequency of the various DPYD variants and the
associated phenotypes appears to vary significantly between
nations and ethnic groups. For example, in the Caucasian
population, ~3–5% has a partial DPD enzyme deficiency
and 0.1–0.2% has a complete DPD enzyme deficiency. On
the other hand, ~8% of the African American population
has a partial DPD enzyme deficiency [15, 16].

Gene–drug interaction

Pharmacological mechanism

A schematic overview of fluoropyrimidine metabolism is
shown in Fig. 1. The DPD enzyme is mainly found in liver,
but also intestinal mucosa, leucocytes, tumour cells and
other tissues. Over 80% of 5-FU is inactivated to 5-fluoro-
5,6-dihydrouracil (DHFU) by DPD. The decreased

metabolic activity of DPD leads to increased intracellular
concentrations of active metabolites of 5-FU [17]. The
increased intracellular concentration of 5-fluoro-2′-deox-
yuridine-5′-monophosphate (FdUMP) increases the risk of
toxicity such as diarrhoea, hand-foot syndrome, mucositis
and myelosuppression. Variants in the DPYD gene can
result in reduced or even absent DPD enzyme activity,
increasing the risk of severe toxicity. For example, 73% of
the patients with DPYD*2A experienced severe toxicity
when treated with a full dose, compared with 23% of *1
allele carriers (wild-type patients) who experienced toxicity
[18]. Many enzymes are involved in fluoropyrimidine
metabolism, however, this guideline is limited to the role of
the DPD enzyme in causing toxicity.

Since the genetic variation in DPYD only partially
determines DPD enzyme activity, these guidelines for dose
adjustment based on the predicted phenotype are no more
than a tool that can be used to achieve the desired intracel-
lular concentration of the active metabolite, to minimize risk
of toxicity. The absence of tested variants does not eliminate
the risk of toxicity. Pharmacokinetic dose adjustment (gui-
ded by steady-state plasma concentrations or AUC) may also
be useful to optimize the dose of 5-FU. This is, however,
currently not routinely used for capecitabine and tegafur, as
they are mainly converted into 5-FU within tissue.

DPYD variants associated with toxicity

The variants known or suspected to have an effect on DPD
enzyme activity, are listed in Table 1. These variants are

Fig. 1 Schematic overview of fluoropyrimidine metabolism. In brief:
tegafur, 5FU, capecitabine are metabolised into three major metabo-
lites. FdUMP, which inhibits TS and prevents conversion of dUMP to
dTMP, which is necessary for pyrimidine and DNA synthesis. FdUTP
is incorporated in DNA, FdUTP is incorporated in RNA, both resulting
in cell death. CES carboxylesterase, CDA cytidine deaminase, 5′dFCR
5′-deoxy-5-fluorocytidine, 5′dFUR 5′-deoxy-5-fluorouridine, 5-FU 5-
fluorouracil, TP thymidine phosphorylase, DPYD gene encoding DPD,

DPD dihydropyrimidine dehydrogenase, DHFU 5,6-dihydro-
fluorouracil, FUPA fluoro-ß-ureidopropionate, F-ß-AL Fluoro-ß-ala-
nine, FUMP fluorouridine monophosphate, FUDP fluorouridine
diphosphate, FUTP fluorouridine triphosphate, FUDR fluorodeoxyur-
idine, FdUMP fluorodeoxyuridine monophosphate, FdUDP fluor-
odeoxyuridine diphosphate, FdUTP fluorodeoxyuridine triphosphate,
dUMP deoxyuridine monophosphate, dTMP deoxythymidine mono-
phosphate, TS thymidylate synthase, TYMS gene encoding TS

Dutch Pharmacogenetics Working Group (DPWG) guideline for the gene–drug interaction of DPYD. . .



mapped by the level of evidence for which association with
toxicity has been established (columns) and the variant’s
effect on DPD enzyme activity (rows). Novel variants in
DPYD will continue to be identified with the introduction of
NGS techniques to clinical practice. The DPYD variants
reported in this manuscript are reported on www.Pha
rmGKB.org, which is referred to on https://databases.lovd.
nl/shared/genes/DPYD. However, in order for these variants
to be included in Table 1, sufficient evidence regarding the
effect on enzyme function or the onset of toxicity must be
investigated, possibly by using the DPYD-Varifier [19] or
by phenotyping patients who carry a novel variant. An
update of this guideline will be published when a renewed

recommendation is given following newly published
articles.

Translation of genotype to predicted phenotype

The DPWG has concluded that four variants have suffi-
cient evidence to be implemented into clinical care:
DPYD*2A (c.1905+1G>A, IVS14+1G>A), DPYD*13
(c.1679T>G), c.2846A>T and c.1236G>A (in linkage
disequilibrium with c.1129–5923C>G). The current
guideline only reports recommendations for these four
variants; no recommendations are provided for other
variants in DPYD or other genes. The results of this

Table 1 Known DPYD variants stratified by level of evidence on the association with toxicity and predicted DPD enzyme activity

Level of evidence Sufficient evidencea Insufficient evidenceb

DPD enzyme activity

Fully functionalc DPYD*5= c.1627A>G
DPYD*9A= c.85T>C

DPYD*4= c.1601G>A
DPYD*6= c.2194G>A
DPYD*9B= c.[85T>C;2657G>A]
DPYD*11= c.1003 G > T
c.496A>G
c.1896T>C
c.1129-15T>C (IVS10-15T>C)

Reduced functionalityd c.2846A>T
c.[1236G>A;1129–5923C>G] (hapB3)e

Fully dysfunctionalf DPYD*2A= c.1905+ 1G>A
DPYD*13= c.1679T>G

DPYD*3= c.1898del
DPYD*7= c.299_302del
DPYD*8= c.703C>T
DPYD*10= c.2983G>T
DPYD*12= c.[62 G > A;1156 G > T]
c.1651G>A
c.300 C>Ag

c.1024 G>Ag

c.1025 A>Gg

c.1475 C>Tg

c.1774C>Tg

c.(2058+1_2059-1)_(2299+1_2300-1)
dup
c.257C>Tg

The variants in this table were selected based on literature in Supplementary Table 1 and 2. However high allele frequency variants reported only in
case reports with fluoropyrimidine toxicity were excluded. For these variants the association with DPD enzyme activity, and resulting severe
fluoropyrimidine-induced toxicity, cannot be determined.
aDPWG has concluded an association between fully functional variants and no resulting toxicity, and an association between reduced functionality
variants or fully dysfunctional variants and association with the onset of severe fluoropyrimidine-induced toxicity
bDPWG has concluded there is insufficient evidence to associate a predicted DPD enzyme activity for these variants and the onset of severe
fluoropyrimidine-induced toxicity
cThese variants are not included in the prospective DPYD genotyping panel, as there is no effect on predicted DPD enzyme activity, and therefore
there is no association with the onset of severe fluoropyrimidine-induced toxicity
dThe effect of the variant on the protein sequence suggests that the protein may still be partially functional. Therefore residual metabolic DPD
capacity may be present
eVariant c.1236G>A, which does not lead to an alternative amino acid, is in complete linkage disequilibrium with variant c.1129–5923C>G, which
leads to aberrant splicing in mRNA, which leads to a premature stop codon as a result. The resulting DPD enzyme activity is 50% of the normal
activity. Both variants are part of haplotype B3
fThe effect of the variant on the protein sequence suggests that the protein may be fully dysfunctional
gThese variants have decreased in vitro enzyme activity

C. A. T. C. Lunenburg et al.

http://www.PharmGKB.org
http://www.PharmGKB.org
https://databases.lovd.nl/shared/genes/DPYD
https://databases.lovd.nl/shared/genes/DPYD


genotyping panel can be used to predict a patient’s phe-
notype, i.e. the DPD enzyme activity. This predicted DPD
activity can be expressed as the DPYD-gene activity
score, which ranges from 0 (no or virtually no DPD
enzyme activity) to 2 (normal DPD enzyme activity due to
homozygosity for fully functional alleles, both assigned
an activity score 1). The gene activity score is a sum of the
two activities of protein isoforms expressed from both
alleles. The development of the gene activity score is
published elsewhere [20]. Although the gene activity
score 0.5 can be predicted based on genotype, the pre-
dicted enzyme activity is not reliable. Therefore the gene
activity score 0.5 has been replaced with predict the gene
activity score correctly (PHENO). A simplified translation
of genotypes to predicted phenotypes as gene activity
scores, is presented in Table 2. The included variants are
those for which substantial and sufficient evidence on the
relation to severe toxicity has been established. It is a
limitation to restrict to these four variants, as other var-
iants may influence DPD activity as well. However, not
all variants having a possible effect on DPD enzyme
activity may have been identified yet or evidence for
identified variants is insufficient. Therefore, this may
result in the incorrect prediction of the DPD enzyme
activity. Another limitation is that currently used

genotyping methods are unable to determine the allelic
location of the variants, but only the dichotomous pre-
sence or absence of the variant. This becomes a limitation
when two or more different genetic variants are identified
in a patient. In this case, either both genetic variants may
be on the same allele, resulting in a genotype with one
fully functional allele and one reduced functionality
allele, or alternatively, both genetic variants may reside on
different alleles, resulting in two alleles with inactive or
reduced functionality. The latter is more likely to occur.
The total gene activity score, however, differs between
these cases. When the DPD enzyme activity cannot be
predicted correctly, an additional phenotyping test is
required to determine the DPD enzyme activity. The
relationship between genotype result and predicted phe-
notype in patients carrying no variants or one or more
variants leading to decreased DPD enzyme activity are
shown in Supplementary Table 3. The frequency of
individuals carrying two or more of four variants con-
sidered in the current guideline is rare, but can be assigned
a gene activity score. A complete genotype to predicted
phenotype translation table can be found in Supplemen-
tary Table 4, which can be used to programme the
translation of genotype results into predicted phenotypes
in laboratory information systems.

Variants from the table according to multiple nomenclatures (HGVS: NM_000110.3, NP_000101.2 and NC_000001.10)

Variants from the table according to multiple nomenclatures (HGVS: NM_000110.3, NP_000101.2 and
NC_000001.10):  
*allele rs-number NM_000110.3 NP_000101.2 NC_000001.10 
*5 rs1801159 c.1627A>G p.(Ile543Val) g.97981395T>C 
*9A rs1801265 c.85T>C p.(Cys29Arg) g.98348885G>A 
- rs67376798 c.2846A>T p.(Asp949Val) g.97547947T>A 
- rs56038477 c.1236G>A p.(Glu412=) g.98039419C>T, in haplotype B3 
- rs75017182 c.1129-5923C>G Not available g.98045449G>C, in haplotype B3 
*2A rs3918290 c.1905+1G>A Not available g.97915614C>G 
*13 rs55886062 c.1679T>G p.(Ile560Ser) g.97981343A>C 
*4 rs1801158 c.1601G>A p.(Ser534Asn) g.97981421C>T 
*6 rs1801160 c.2194G>A p.(Val732Ile) g.97770920C>T 
*9B rs1801265 + 

rs1801267 
c.[85T>C;2657G>A] p.[(Cys29Arg;Arg886His)] g.[98348885G>A;97564154C>T] 

*11 rs72549306 c.1003G>T p.(Val335Leu) g.98058899C>A 
- rs2297595 c.496A>G p.(Met166Val) g.98165091T>C 
- rs17376848 c.1896T>C p.(Phe632=) g.97915624A>G 
- rs56293913 c.1129-15T>C Not available g:98039541A>G 
*3 rs72549303 c.1898del p.(Pro633Glnfs) g.97915622del 
*7 rs72549309 c.299_302del also 

described as 
c.295_298delTCAT on 
PharmGKB.org 

p.(Phe100Serfs) g.98205967_98205970del 

*8 rs1801266 c.703C>T p.(Arg235Trp) g.98157332G>A 
*10 rs1801268 c.2983G>T p.(Val995Phe) g.97544627C>A 
*12 rs80081766 + 

rs78060119 
c.[62G>A;1156G>T] p.[(Arg21Gln;Glu386Ter)] g.[98348885G>A;97564154C>T] 

- rs777425216 c.1651G>A p.(Ala551Thr) g.97981371C>A 
- Not available c.300C>A p.(Phe100Leu) g.98205969G>T 
- rs183385770 c.1024G>A p.(Asp342Asn) g.98058878C>T 
- rs769709846 c.1025A>G p.(Asp342Gly) g.98058877T>C 
- rs72549304 c.1475C>T p.(Ser492Leu) g.98015165G>A 
- rs59086055 c.1774C>T p.(Arg592Trp) g.97915746G>A 
- Not available c.(2058+1_2059-

1)_(2299+1_2300-1)dup 
Not available Not available 

- rs568132506 c.257C>T p.(Pro86Leu) g.98206012G>A 

Dutch Pharmacogenetics Working Group (DPWG) guideline for the gene–drug interaction of DPYD. . .



Additional phenotyping test when genotype is unable to
predict phenotype

In contrast to the DPYD genotyping test, which aims to
predict DPD enzyme activity, a DPD phenotyping test can
be performed to measure the actual DPD enzyme activity.
Possible methods to perform phenotyping are to measure
the DPD enzyme activity in peripheral blood mononuclear
cells (PBMCs) or to measure the uracil concentrations in
plasma or urine [21]. The average Caucasian DPD enzyme
activity is 9.9 ± 0.95 nmol/h per mg protein [22]. Less
commonly performed methods include: (1) the 2-13C-uracil
breath test [23], where 13C02 is measured, which is a pro-
duct of 2-C13-uracil degradation by DPD and other enzymes
involved in the katabolic route of pyrimidines; (2) the
quantification of the uracil/dihydrouracil ratio in plasma,
where endogenous substrates uracil and dihydrouracil are
measured [24, 25], although recently it was shown that
uracil levels were superior to the dihydrouracil/uracil ratio
as a predictor of severe toxicity [26]; and (3) measurement
the metabolism of a single dose of uracil [27]. However, all
DPD phenotyping tests have their limitations. Currently, the
DPD enzyme activity measurements from PBMCs are
considered the best developed DPD phenotyping test in The
Netherlands [27, 28].

Supporting body of evidence

A detailed description of the methods used for literature
collection, assessment and preparation of the gene-drug
monograph has previously been published elsewhere [2, 7].
In brief, a systematic review of literature was performed and
relevant articles were summarized by a scientist of the
Royal Dutch Pharmacists Association (MN). The performed
search strategy can be found in Supplementary Material 1.
Each article was provided with two scores: (1) quality of
evidence and (2) clinical impact. The quality of evidence

was scored on a five-point scale ranging from 0 (lowest—
data on file) to 4 (highest—well performed controlled stu-
dies or meta-analysis) and the clinical impact of clinical
effect was scored on a seven-point scale ranging from AA#

(positive effect) to F (highest negative effect). The criteria
used to develop these scores have been published in detail
previously [2, 7]. This clinical impact scale (AA#-F) runs
parallel to the Common Terminology Criteria for Adverse
Events (CTCAE); where CTCAE grade 5 severity is equal
to clinical relevance score F (death) and CTCAE grade
1 severity is equal to clinical relevance score B. The clinical
relevance score additionally includes the scores AA#, AA
and A, since these do not exist in the CTCAE. These regard
“positive clinical effect”, “no clinical or kinetic effect”, and
“significant kinetic effect or not clinically relevant effect”,
respectively. The summaries of articles, and their respective
scores, reviewed to devise this guideline can be found in the
Supplementary Tables 1 and 2. The summaries of each
article and their respective scores were checked by two
independent DPWG members.

For 5-FU/capecitabine, the initial literature search was
performed on March 24, 2009, followed by a second and
third search on July 9, 2014 and October 19, 2017. To
update this guideline to the current date, an additional lit-
erature search was performed on January 30, 2019. Case
reports concerning systemic 5-FU or capecitabine therapy
were excluded in this literature review, due to a large
number of case reports and other available publications of
greater evidentiary quality. Kinetic studies from 2009
onwards were only included if the kinetic parameters were
given per genotype. Clinical studies were only included if
the patient numbers exceeded 500 (from 2009 onwards) or
1000 (from May 2014 onwards) and the patient numbers
with partially functional activity were at least ten or if the
study investigated a variant for which no studies were as yet
included or if the study investigated the effect of dose
adjustment. From 2009, articles investigating the effect of a

Table 2 The translation of genotypes to predicted phenotypes, as gene activity scores

Patient genotype Gene activity score

Carrier of no variants associated with either reduced functionality or fully dysfunctional
DPD activity (*1/*1)

Gene activity score 2

Carrier of one variant associated with reduced functionality of DPD activity (*1/
c.1236G>A or *1/c.2846A>T)

Gene activity score 1.5

Carrier of one variant associated with fully dysfunctional DPD activity (*1/*2A or *1/
*13)

Gene activity score 1

Carrier of two variants associated with reduced functionality of DPD activity (for
example c.1236G>A/c.2846A>T) Or Carrier of one variant associated with reduced
functionality of DPD activity and one variant associated with fully dysfunctional DPD
activity (combinations of c.2846A>T or c.1236G>A with *2A or *13, example given
*2A/c.2846A>T)

PHENO: DPD enzyme activity cannot be predicted
correctly, an additional phenotyping test is required
to determine the DPD enzyme activity

Carrier of two variants associated with fully dysfunctional DPD activity (*2A/*2A or
*13/*13 or *2A/*13)

Gene activity score 0

C. A. T. C. Lunenburg et al.



group containing both polymorphisms known to increase
the risk of toxicity and polymorphisms not known to
increase the risk of toxicity were not included. If more than
one article described data of the same patient group and the
same polymorphisms, only the article with data from the
largest amount of patients was included.

For tegafur, the initial literature search was performed on
August 20, 2009, followed by a second, third and fourth
search on October 2, 2012, July 27, 2015, and October 19,
2017. To update this guideline to current date, an additional
literature search was performed on January 30, 2019.

General conclusion of evidence

In the systematic review performed for 5-FU/capecitabine,
18 of 20 studies and all three meta-analyses found an
increased risk of grade ≥3 toxicity (either overall toxicity or
at least one specified type of toxicity) for patients carrying
variants resulting in reduced DPD enzyme activity (ranging
from gene activity score 0 to 1.5, and PHENO). This
increased risk was shown separately for patients assigned
DPYD-gene activity scores 1 and 1.5, but gene activity
scores 0 and PHENO were only investigated when grouped
with patients assigned other gene activity scores. However,
the increased risk of toxicity for patients assigned gene
activity scores 0 and PHENO can be concluded based on the
confirmed association for gene activity scores 1 and 1.5,
where deficiency is less, and is further supported by cases of
patients assigned gene activity scores 0 and PHENO who
developed severe toxicity. Only one study investigating
clinical outcome concluded there was no effect of variants
on risk of toxicity. Based on the systematic review, the
DPWG concludes that a gene–drug interaction is present and
that DPD enzyme deficiency increases risk of severe toxicity
in patients using capecitabine/5-FU. The highest quality of
evidence concluding a gene–drug interaction was scored 4.

In the systematic review performed for tegafur with the
DPD inhibitor uracil, one case report described four patients
who used standard doses and developed severe toxicity.
These patients were assigned DPYD-gene activity scores 1
and 1.5. Toxicity (CTCAE grade 4) was similar to that
reported in patients treated with 5-FU or capecitabine, both
of which are given without a DPD inhibitor. There were no
data available for patients assigned DPYD-gene activity
score 0 or PHENO, however, the increased risk of toxicity
among these patients can be concluded based on the con-
firmed association with toxicity for gene activity scores 1
and 1.5, where deficiency is less. Based on the systematic
review, the DPWG concludes that there is a clinically rele-
vant gene–drug interaction present and that DPD enzyme
deficiency increases risk of severe toxicity in patients using
tegafur with DPD inhibitors. The highest quality of evidence
concluding a gene–drug interaction was scored 2.

Pharmacotherapeutic recommendations

The DPWG therapeutic recommendation using a patient’s
pre-therapeutic PGx test result to optimize starting dose of
5-FU/capecitabine and tegafur with DPD inhibitors is
summarized in Supplementary Tables 5 and 6, respectively.

In brief, for patients initiating 5-fluorouracil or capeci-
tabine: subjects with a gene activity score of 0 are recom-
mended to avoid both systemic and cutaneous 5-fluorouracil
or capecitabine, alternatively, DPD enzyme activity may be
determined to adjust the systemic dose accordingly; subjects
with a gene activity score of 1 or 1.5 are recommended to
initiate therapy with 50% of the standard dose of 5-
fluorouracil or capecitabine. Further titration of the dose is
possible, guided by toxicity. If genotype results cannot
PHENO, for example due to multiple identified variants, it
is advised to determine the DPD enzyme activity to define
an initial starting dose. For patients initiating tegafur, a gene
activity score of 0, 1 or 1.5 recommends avoiding tegafur;
when this is not possible, starting with a low dose and
titrating dose based upon toxicity. If genotype results cannot
PHENO, for example due to multiple identified variants, it
is advised to determine the DPD enzyme activity to define
an initial starting dose. A gene activity score of 2 (reference
value) does not result in a recommendation for dose adap-
tation for 5-FU, capecitabine or tegafur.

Where possible, dose adjustments have been calculated
based on 5-FU clearance or AUC after administration of 5-
FU or capecitabine. Data were also extrapolated to tegafur
with DPD inhibitor, as this compound also follows the same
catabolic and anabolic routes after conversion to 5-FU after
clearance of the DPD inhibitor from the body. Data on 5-FU
clearance are only available for patients carrying DPYD*1/
*2A, DPYD*1/c.2846A>T and DPYD*2A/c.2846A>T.
There are data from one patient with DPYD*1/*13 who
developed severe toxicity after 5-FU use, from one patient
with c.2846A>T/c.2846A>T and from one patient with
c.1236G>A/c.2846A>T.

See Supplementary Tables 7 and 8 for an overview of
suggested pop-up texts for electronic prescribing systems
for pharmacists and physicians. These can be used to pro-
gramme alerts into the clinical decision support system
(CDSS). The guidelines and background information will
be available on PharmGKB.org.

Implications for clinical practice

There is currently an ongoing debate regarding whether and
which single drug–gene pairs should be implemented into
routine care. Points of debate include the amount of evi-
dence that is necessary supporting effectiveness of pre-
emptive genotyping, the cost-effectiveness of the interven-
tion and reimbursement of PGx testing [29, 30]. This
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inconclusive debate seems to have hampered implementa-
tion of drug–gene pairs which seem ready for imple-
mentation [1, 31]. In an effort to overcome this
inconclusiveness and to direct clinicians on whether or not
to order relevant PGx genotyping tests before initiating
therapy, the DPWG has developed the clinical implication
score. The pre-emptive PGx results for a certain drug–gene
pair can be scored as: essential, beneficial, potentially
beneficial or not required. The development of these cate-
gories and the systematic scoring criteria are discussed
elsewhere [32]. In brief, the implications for clinical prac-
tice are based on a list of four criteria regarding the fol-
lowing: the clinical effect associated with the gene–drug
interaction, the level of evidence supporting the clinical
effect, the effectiveness of the intervention in preventing the
clinical effect (which includes the number needed to gen-
otype) and the PGx information included in the drug-label.
The scores provided for each of these criteria by the DPWG
can be found in Supplementary Table 9.

As a result, the DPWG has concluded the clinical
implication score of DPYD-fluoropyrimidines to be
“essential”. This score dictates that DPYD genotyping prior
to treatment must be performed for all patients initially
being prescribed therapy with 5-FU, capecitabine or tegafur
with DPD inhibitors, to optimize the initial dose and to
prevent potentially fatal toxicity.

Differences between available guidelines

Other guidelines regarding the gene–drug interaction of
DPYD and fluoropyrimidines have been developed. To the
best of our knowledge, guidelines are available from CPIC
[11, 33], French (French Network of Pharmacogenetics—
RNPGx) [34] and Italian (Associazione Italiana di Onco-
logia Medica—AIOM-SIF) [unpublished guidelines, edited
by the AIOM-SIF Working Group] initiatives. We have
compared the DPWG guidelines with other available
guidelines published in English. This regards only the CPIC
guideline, since the French and Italian guidelines are
unpublished or not in English.

CPIC

Differences between CPIC and DPWG methodology, gen-
otype to phenotype conversion and recommendations have
previously been described in detail [6]. However, both
guidelines have been updated [5, 33, 35, 36]. The current
DPWG and CPIC guidelines [5] for DPYD/fluoropyr-
imidines differ regarding the therapeutic recommendations.
In contrast to CPIC, DPWG distinguishes between 5-FU/
capecitabine and tegafur within the therapeutic recommen-
dations for fluoropyrimidines, where the CPIC guideline
does not provide any dosing recommendations for tegafur

due to the limited available evidence. DPWG also further
distinguishes between systemic and cutaneous routes of
administration within the 5-FU/capecitabine recommenda-
tions. The therapeutic recommendations for 5-FU/capeci-
tabine also differ regarding the following: (1) For patients
with gene activity score 0: DPWG recommends phenotyp-
ing while CPIC does not when no alternative is available.
(2) For patients with gene activity score PHENO DPWG
recommends phenotyping to determine starting dose or
selection of an alternative whereas CPIC recommends an
alternative or a strongly reduced dose with therapeutic drug
monitoring. (3) DPWG recommends to phenotype all
homozygous carriers of any variant, whereas CPIC recom-
mends to adjust the dose for a homozygous carrier of
c.2846A>T with more than 50%.

Data availability

All data and material are either included in the supple-
mentary information or publicly available (i.e. the published
articles, PubMed). The guidelines and background infor-
mation will be available on PharmGKB.org.
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