120 research outputs found

    Eigenmodes of superconducting cavities calculated on an APE-100 supercomputer (SIMD)

    Get PDF
    The construction of modern accelerators is usually supported by the numerical determination of eigenmodes in the accelerating cavities. Often the rotational symmetry of the cavity is used to simplify the numerical simulation. However, in cases where the cavity lacks rotational symmetry resp. where attached components like couplers have to be taken into account, a fully three dimensional treatment of the Maxwell equations is necessary. This requires more computer power than is available on a normal high end workstation. Therefore, in the present approach a parallel SIMD super computer (APE-100) is used to compute the eigenmodes of accelerating cavities. As an example parts of the superconducting TESLA structure are investigated. The geometry input is parsed by MAFIA which transfers the resulting system matrix, incorporating geometry and material information, to the APE-100. The result of the diagonalization procedure is then read back to the MAFIA host where further data analysis and visualization can be done. (2 refs)

    Computation of electrostatic fields in anisotropic human tissues using the Finite Integration Technique (FIT)

    Get PDF
    The exposure of human body to electromagnetic fields has in the recent years become a matter of great interest for scientists working in the area of biology and biomedicine. Due to the difficulty of performing measurements, accurate models of the human body, in the form of a computer data set, are used for computations of the fields inside the body by employing numerical methods such as the method used for our calculations, namely the Finite Integration Technique (FIT). A fact that has to be taken into account when computing electromagnetic fields in the human body is that some tissue classes, i.e. cardiac and skeletal muscles, have higher electrical conductivity and permittivity along fibers rather than across them. This property leads to diagonal conductivity and permittivity tensors only when expressing them in a local coordinate system while in a global coordinate system they become full tensors. The Finite Integration Technique (FIT) in its classical form can handle diagonally anisotropic materials quite effectively but it needed an extension for handling fully anisotropic materials. New electric voltages were placed on the grid and a new averaging method of conductivity and permittivity on the grid was found. In this paper, we present results from electrostatic computations performed with the extended version of FIT for fully anisotropic materials

    Simulation of the Behavior of Ionized Residual Gas in the Field of Electrodes

    Get PDF
    Light sources of the next generation such as ERLs require minimal beam losses as well as a stable beam position and emittance over the time. Instabilities caused by ionized residual gas have to be avoided. In this paper we present simulations of the behavior of ionized residual gas in the field of clearing electrodes and investigate e.g. clearing times. For these simulations we apply MOEVE PIC Tracking developed at Rostock University. We demonstrate numerical results with parameters planed for the ERL BERLinPr

    Numerical Studies on the Impact of Ionized Residual Gas on an Electron Beam in an ERL

    Get PDF
    Energy Recovery Linacs ERLs are the most promising candidates for next generation light sources now under active development. An optimal performance of these machines requires the preservation of the high beam brightness generated in the injector. For this, the impact of the ionized residual gas on the beam has to be avoided as it causes instabilities and emittance growth. Typical measures to reduce the effect of ion clouds are clearing electrodes and clearing gaps in the bunch train. In this paper, we present numerical studies of the impact of ion clouds on the electron bunch train. The simulations are performed with the software package MOEVE PIC Tracking developed at Rostock University. The model for the bunch and the ion cloud takes into account a distribution of macro particles. The interaction of the bunch with the ion cloud is computed with a 3D space charge model. Hence, particle tracking allows for detailed studies of bunch characteristics such as the emittance. The presented numerical investigations take into account the parameters of the ERL BERLinPro with the objective to deduce appropriate measures for the design and operation of BERLinPr

    Berechnung des Hochfrequenzverhaltens komplexer Strukturen mit der Methode gekoppelter Streuparameter – CSC

    Get PDF
    Es wird eine Methode zur Berechnung der Hochfrequenz-Eigenschaften komplexer Strukturen vorgestellt. Das Verfahren beruht auf der Zerlegung der Gesamtstruktur in einzelne einfachere Segmente, deren breitbandige S-Matrizen mit kommerziellen Programmen berechnet werden. Das Gesamtsystem kann von beliebiger Topologie sein, und die Zahl der die Segmente verkoppelnden Hohlleiter- Moden ist nicht begrenzt. Als Ergebnis steht bei offenen Strukturen deren vollständige S-Matrix, bei abgeschlossenen deren Resonanzeigenschaften zur Verfügung. Die theoretischen Grundlagen werden beschrieben und die Anwendung mit Beispielen aus dem Gebiet der Teilchenbeschleuniger und zu Eigenschaften schwach elliptisch geformter Resonatoren illustriert.</p><p style=&quot;line-height: 20px;&quot;> A method called Coupled S-Parameter Calculation – CSC is described which is used to calculate the rf properties of complex structures, i.e. either their scattering (devices with ports) or their resonance properties. The method is based on the segmentation of the entire system into sections being less complex, the external calculation of the section’s broadband S-matrices, and a combination scheme, which is applicable to any topology and number of modes. The method’s principle is described. Examples from the field of particle accelerator cavities and about the properties of weakly elliptical resonators are given

    Simulations for Ion Clearing in an ERL

    Get PDF
    Energy Recovery Linacs ERLs being the most promising candidates for next generation light sources put very high demands on preservation of beam brightness and reduction of beam losses. Thus, it is mandatory to avoid the impact of ionized residual gas considered as a source for instabilities in accelerators. Recently, we have presented simulations for the clearing of ionized residual gas with electrodes performed with an upgraded version of software package MOEVE PIC Tracking [1] which is being currently further developed to model the interaction of the ions with the electron beam in presence of external electromagnetic potentials such as the field of clearing electrodes. The tracking code allows for studies on clearing times for electrodes with different voltage as well as detailed studies of the behavior of the ions in the environment of the electrodes. In this paper we take further steps to study possible designs of clearing electrodes. Especially, we will consider the influence of different gas mixtures on clearing times and possible configurations for the clearing electrodes. We use parameters planned for BERLinPro as an example for our studie

    Traveling Poles Elimination Scheme And Calculations Of External Quality Factors Of HOMS In SC Cavities

    Get PDF
    The main scope of this work is the automation of the extraction procedure of the external quality factors Qext of Higher Order Modes HOMs in Superconducting SC radio frequency RF cavities. The HOMs are generated by charged particle beams traveling through a SC cavity at the speed of light amp; 8776; 1 . The HOMs decay very slowly, depending on localization inside the structure and cell to cell coupling, and may influence succeeding charged particle bunches. Thus it is important, at the SC cavity design optimization stage, to calculate the Qext of HOMs. Traveling Poles Elimination TPE scheme was used to automatically extract Qext from the transmission spectra and careful eigenmode analysis of the SC cavity was performed to confirm TPE results. The eigenmode analysis also delivers important information about band structure, cell to cell coupling and allows rapid identification of modes that could interact with the charged particle bunches

    UD Information Services Announces Appointment and Promotion

    Get PDF
    News release announces that Patricia Rooney has been promoted to Assignment Editor and Pamela Blumsheid has been appointed Public Affairs Coordinator

    Results and Performance Simulations of the Main Linac Design for BERLinPro

    Get PDF
    The Berlin Energy Recovery Linac Project BERLinPro is designed to develop and demonstrate CW LINAC technology for 100 mA class ERLs. High current operation requires an effective damping of higher ordermodes HOMs of the 1.3 GHz main linac cavities. We have studied elliptical seven cell cavities damped by five waveguides at the adjacent beam tubes. Eigenmode calculations for geometrical figures of merit show that the present design should allow successful cw linac operation at the maximum beam current of 100 mA 77pC bunch charge. In this paper the progress in HOM calculations to avoid beam breakup instabilities for the favored cavity structure is presente
    • …
    corecore